Bilan radioécologique de l’environnement aquatique du bassin versant et de la rade de Brest

Bilan radioécologique de l’environnement aquatique du bassin versant et de la rade de Brest

Prolifération nucléaire

Mis en avant

Texte initialement écrit pour le Dictionnaire des risques paru chez Armand Colin et paru dans l’ACROnique du nucléaire n°63, décembre 2003. Version remise à jour pour l’édition 2007 du dictionnaire.


“On va faire la guerre une bonne dernière fois pour ne plus avoir à la faire. Ce fut l’alibi bien-aimé […] des conquérants de toutes tailles. […] Par malheur, ça n’a jamais marché” note Jean Bacon. En effet, la “civilisation” ou la “démocratie”, selon les époques, prétendument apportées au bout du fusil, n’ont jamais supprimé les conflits. Avec l’arme nucléaire, en exposant l’ennemi potentiel au risque d’une riposte massivement destructrice, a-t-on enfin trouvé définitivement le chemin de la paix ? L’équilibre de la terreur entre les deux grandes puissances aurait ainsi évité une troisième guerre mondiale, mais pas les nombreux petits conflits qui ont ensanglanté la planète. On comprend alors l’attrait que suscite cette arme radicalement nouvelle pour de nombreux pays se sentant menacés : comment oserions-nous la refuser aux pays en voie de développement alors qu’elle est indispensable à notre survie, et ceci d’autant plus, que cela représente de juteux marchés pour le fleuron de notre industrie ? Evidemment, le transfert de technologie sera “pacifique”, les technologies civile et militaire pour se procurer la matière première étant identiques. Tout comme les armes exportées sont qualifiées de “défensives”.

Les motivations pour partager son savoir sont multiples : échange de technologies entre la Corée du Nord et le Pakistan, accès au pétrole irakien ou iranien pour la France, développer en secret des technologies militaires dans un pays tiers pour l’Allemagne ou tout simplement renforcer son camp. Malheureusement, cette prolifération, dite horizontale, ne fait qu’augmenter le risque de voir un conflit régional dégénérer en guerre nucléaire. En effet, aucun pays, pas même les démocraties, n’est à l’abri de l’accession au pouvoir d’une équipe dirigeante peu scrupuleuse.

De fait, pas un pays ne s’est doté d’infrastructures nucléaires sans une arrière-pensée militaire, même si certains, comme la Suisse, le Brésil ou l’Afrique du Sud par exemple, ont officiellement renoncé à l’arme nucléaire. Quarante-quatre pays sont actuellement recensés par le traité d’interdiction des essais nucléaires comme possédant une technologie suffisante pour accéder à l’arme suprême. Personne ne met en doute qu’il suffirait d’un délai de quelques mois à un pays très industrialisé pour disposer, s’il le souhaitait, de l’arme atomique et des moyens de la déployer. L’acharnement du Japon, par exemple, à vouloir développer une filière plutonium et des lanceurs de satellites en dépit de nombreux déboires est lourd de sens à cet égard.

Conceptuellement, il est facile de fabriquer une arme rudimentaire, la difficulté étant d’ordre technologique pour accéder à la matière fissible. Le plutonium issu des réacteurs civils peut faire l’affaire, avec des performances moindres. Les Etats-Unis l’ont testé. Pour un groupe terroriste, qui recherche davantage un impact psychologique et médiatique, c’est suffisant. Mais dans une situation d’équilibre de la terreur, il faut des armes fiables qui n’explosent pas accidentellement et qui, en cas d’attaque, détruisent bien toutes les capacités ennemies à réagir. De telles armes nécessitent de la matière fissile dite de qualité militaire et des développements technologiques poussés. Le risque est déjà grand, avec des armes plus ou moins rudimentaires, de voir des équilibres régionaux se transformer en catastrophe, sans pour autant apporter la paix. Par exemple, le conflit au Cachemire n’a pas cessé avec l’accession de l’Inde et du Pakistan au statut de puissances nucléaires.

Dès 1946, l’Assemblée générale des Nations unies vote la création d’une commission atomique chargée d’éliminer les armes nucléaires et de destruction massive. Depuis, on ne compte plus les tentatives officielles et vœux pieux pour parvenir à un désarmement général. “L’homme se trouve placé devant l’alternative suivante : mettre fin à la course aux armements ou périr” prévient même l’ONU en 1977. Rien n’y fait. La diminution des arsenaux nucléaires des grandes puissances ne doit pas faire illusion. Ce sont des armes qui étaient devenues stratégiquement obsolètes qui ont été démantelées.

Les grandes puissances prennent comme prétexte la menace liée à la prolifération horizontale pour garder des arsenaux conséquents et développer de nouvelles armes, provoquant ainsi une prolifération dite verticale. Mais le tollé mondial provoqué par la reprise des essais nucléaires occidentaux en France en 1995 impose une certaine discrétion. Les programmes nucléaires “civils” permettent d’entretenir une infrastructure industrielle et un savoir faire ; sous couvert d’entretien du stock d’armes, les grandes puissances se sont engagées dans la course à une arme de quatrième génération miniaturisée, utilisable sur le champ de bataille. Elles s’appuient sur la recherche fondamentale qui leur sert d’alibi. Ainsi, par exemple, le laser mégajoule en France met en avant son intérêt pour l’astrophysique : la population se laisse berner et les concurrents avertis peuvent mesurer les progrès réalisés. Mais, le partage de certaines connaissances avec une communauté scientifique non-militaire, nécessaire pour attirer des chercheurs, facilite la prolifération horizontale.

Le développement de ces nouvelles armes est lié à un changement stratégique : avec la fin de la guerre froide, les territoires nationaux ne sont plus directement menacés ; c’est l’accès aux matières premières et ressources énergétiques qui devient primordial. Mais en cas d’utilisation, la frontière qui existe entre les armes classiques et celles de destruction massive risque d’être brouillée et d’entraîner une escalade dans la riposte. Les idéalistes voient là une violation de l’article 6 du traité de non-prolifération : “Chacune des Parties au Traité s’engage à poursuivre de bonne foi des négociations sur des mesures efficaces relatives à la cessation de la course aux armements nucléaires à une date rapprochée et au désarmement nucléaire et sur un traité de désarmement général et complet sous un contrôle international strict et efficace.” Alors que chaque pays jure de sa bonne foi.

Un désarmement complet n’est réalisable que par étapes ; le plus urgent semble être de sortir de l’état d’alerte. Comme au temps de la guerre froide, des milliers d’armes nucléaires américaines et russes peuvent être déclenchées en quelques dizaines de minutes. Un déclenchement accidentel ou suite à une erreur de jugement, entraînant une riposte immédiate, aurait des conséquences effroyables. Cependant, un désarmement complet et sûr impliquerait un renoncement à de nombreuses activités industrielles et de recherche, telles celles qui ont été interdites à l’Irak par le conseil de sécurité de l’ONU après la première guerre du Golfe. Se priver de recherches sur l’atome, surtout quand on a accumulé des déchets nucléaires dont on ne sait que faire, est-ce vraiment souhaitable ? Placer les activités proliférantes sous contrôle international est nécessaire, mais pas suffisant. Les institutions et traités ad hoc ayant montré leur inefficacité depuis la seconde guerre mondiale, de nouveaux mécanismes sont à inventer, parmi lesquels un contrôle citoyen avec la mise en place d’une protection internationale pour les lanceurs d’alerte.

Il n’est pas besoin, comme on le sait, d’armement nucléaire pour tuer massivement. Mais l’attrait pour ces armes de destruction massive est tel qu’il semble impossible d’en freiner la prolifération, malgré le lourd tribut déjà payé par les pays engagés dans la course folle. Outre le coût financier et humain qui aurait pu trouver des utilisations plus pacifiques, la fascination pour cette arme a fait que tout était permis. Partout, des populations – souvent des minorités ethniques et des appelés du contingent – ont été exposées sciemment aux essais nucléaires atmosphériques. Aux Etats-Unis, près 9.000 cobayes humains ont été, à leur insu, victimes d’expérimentations médicales visant à étudier l’influence des radioéléments. Nombre d’entre eux étaient des enfants. En URSS, l’infrastructure nucléaire était construite par des prisonniers des camps de détention spéciaux. L’environnement a aussi été sacrifié et certains sites ne peuvent plus être réhabilités. C’est bien là l’ironie suprême de la course à l’arme nucléaire, qui sous couvert d’apporter la sécurité absolue à chacun, n’aura conduit qu’à réduire la sécurité de tous.

David Boilley

Bibliographie :

  • Dominique Lorentz, Affaires atomiques, Les arènes, 2001
  • Jean Bacon, Les Saigneurs de la guerre : Du commerce des armes, et de leur usage, Les Presses d’aujourd’hui, 1981 et Phébus 2003.
  • Sven Lindqvist, Maintenant tu es mort ; Histoire des bombes, Serpent à plumes 2002
  • Conférences Pugwash sur la science et les affaires mondiales, Eliminer les armes nucléaires ; Est-ce souhaitable ? Est-ce réalisable ?, Transition, 1997
  • André Gsponer et Jean-Pierre Hurni, Fourth generation of nuclear weapons, Technical Report, INESAP, c/o IANUS, Darmstadt University of Technology, D-64289 Darmstadt (mai 1998)
  • Bruno Barrillot, Audit atomique, éd. du CRDPC, 1999.
  • Bruno Barrillot, L’héritage de la bombe, éd. du CRDPC, 2002.
  • Stephen I. Schwartz et al, Atomic audit, Brookings Institution Press mai 1998
  • Eileen Welsome, The Plutonium Files: America’s Secret Medical Experiments in the Cold War, Dial Press 1999
  • Kenzaburô Oé, Notes sur Hiroshima, Gallimard 1996

dicodico2Autres textes du dictionnaire des risques :

Ancien lien

L’irradiation et la contamination

Fiche technique parue dans l’ACROnique du nucléaire n°62 de septembre 2003


Lorsqu’on s’intéresse aux rayonnements ionisants et à leurs conséquences sur la santé, il y a deux phénomènes que l’on doit distinguer, ce sont l’irradiation et la contamination. Si le premier est spécifique d’une atteinte extérieure de l’organisme, le second fait référence à une atteinte par voie interne. Les différences entre ces deux processus viennent, d’une part, des rayonnements mis en cause, d’autre part, du type d’effets qu’ils produisent sur l’organisme. Ce sont ces points particuliers qui vont être présentés par la suite.


L’irradiation

 

Définition

L’irradiation est la conséquence directe de l’exposition externe d’un corps (inerte ou vivant) à des rayonnements ionisants (R.I.). Réalisée de façon contrôlée, l’irradiation trouve des applications dans différents secteurs tels que l’industrie agroalimentaire (assainissement et conservation des aliments) ou encore le milieu médical (radioexpositions externes lors des radiographies). Mais lorsque les conditions d’irradiation ne sont plus maîtrisées (accident de transport de source radioactive ou accident de criticité  [1] par exemple) ce phénomène prend une autre ampleur et on le considère essentiellement par rapport à ses effets au niveau biologique et physiologique généralement dus à de fortes doses de rayonnements. Pour des doses plus faibles, de l’ordre de celles induites par l’irradiation naturelle (rayonnements cosmiques, telluriques et radioactivité interne du corps humain) d’une moyenne de 2,4 millisievert par an (2,4 mSv/an, Equivalent de dose efficace), on parle plutôt d’exposition, étant donné la difficulté à établir une relation entre ces rayonnements et d’éventuels effets sur la santé. En ce qui concerne l’utilisation médicale des rayonnements ionisants, on considère que les doses reçues font partie du rayonnement artificiel tolérable c’est à dire qui peut être justifié (dose moyenne d’irradiation due aux activités humaines : 0,9 à 1 mSv/an, dont 0,7 mSv/an dus aux radio-diagnostiques).

Quels sont les rayonnements mis en cause ?

Lors des accidents par irradiation, les rayonnements électromagnétiques (photons gamma et X) sont le plus souvent impliqués, essentiellement parce qu’ils ont une grande distance de parcours dans l’air (plusieurs centaines de mètres pour les hautes énergies). De plus, possédant un certain pouvoir de pénétration, ils peuvent traverser des matériaux qui auraient arrêté les rayonnements alpha ou bêta. Ce pouvoir de pénétration peut ainsi impliquer ces rayonnements électromagnétiques dans des irradiations plus ou moins profondes de l’organisme, en fonction de leur énergie.

Comment s’en protéger ?

La première façon de se protéger des rayonnements ionisants est de s’éloigner de la source. En ce qui concerne le rayonnement alpha et les bêta d’énergie inférieure à 65 keV (Kilo electronVolt), le risque d’irradiation externe n’existe pas car ces rayonnements ne peuvent franchir la couche cornée de la peau ; ils n’irradient ainsi aucun tissu vivant. De plus, n’ayant qu’un faible parcours dans l’air, ils sont naturellement stoppés avant d’atteindre le corps, même pour des distances source-cible de quelques centimètres. Quant aux photons gamma, ils auront une probabilité d’atteindre leur cible d’autant plus faible que celle-ci sera éloignée de la source (l’intensité du rayonnement décroît selon l’inverse du carré de la distance).

La deuxième protection consiste à placer un écran entre soi et la source. Une feuille de papier suffira pour stopper les rayonnements alpha ; les particules bêta seront absorbées par quelques millimètres de verre, de plexiglas ou d’aluminium ; le rayonnement X par quelques millimètres de plomb, mais pour les photons gamma, il est nécessaire d’interposer au moins plusieurs centimètres (voire quelques dizaines de cm) de matériaux à densité élevée (plomb, béton, uranium appauvri) afin d’atténuer efficacement le rayonnement. Un exemple de ce type de protection existe dans les services hospitaliers de radiologie dans lesquels le personnel manipulant est protégé par des tabliers et des vitres de  plomb.

Quelles peuvent être les conséquences d’une irradiation ?

Les premiers effets des rayonnements ionisants (R.I.) sur la matière vivante sont dits non stochastiques ou précoces. Ils apparaissent toujours (effets obligatoires) à partir d’une dose seuil  [2] au-delà de laquelle, la gravité de l’effet est proportionnelle à la dose. Parfois, une réversibilité est possible si les lésions ne sont pas trop importantes.
Les rayonnements électromagnétiques (X et gamma) qui sont par nature peu ionisants (c’est à dire qu’ils ne délivrent pas toute leur énergie aux cellules qu’ils rencontrent) peuvent néanmoins être à l’origine de lésions relativement importantes. Ces lésions, qui dépendent de la dose reçue, dépendent également de l’étendue de l’irradiation. Parmi les victimes, on distingue ainsi généralement celles ayant subi une irradiation localisée à dose élevée de celles ayant subi une irradiation corporelle globale.

L’irradiation localisée : elle est le plus souvent due à la « prise en main » d’une source radioactive qui, suite à un égarement, est ramassée (irradiation de la main) puis mise dans une poche (irradiation de la cuisse ou de la partie du corps la plus proche).
Le premier effet visible s’apparente à une brûlure de la peau (érythème) accompagnée de nausées, puis successivement avec l’augmentation de la dose on observe une épidermite sèche (inflammation de la peau), une épidermite exsudative (suintement pathologique), jusqu’à la nécrose des tissus pour des doses extrêmement fortes (plusieurs dizaines de grays, Gy). Si dans ce dernier cas, heureusement rare et généralement observé pour des accidents de « contact », l’amputation est parfois inévitable, les traitements les plus couramment effectués s’assimilent à ceux, classiques, des brûlures du second degré.
En ce qui concerne l’observation des premiers symptômes, le temps nécessaire à leur apparition est de quelques heures dans le cas des très fortes doses, alors qu’un retard (faussement rassurant) a lieu dans la plupart des cas.

L’irradiation corporelle globale : il peut s’agir de l’exposition accidentelle à une source radioactive, mais les cas les plus flagrants, ayant permis de mieux connaître la symptomatologie, restent l’accident de Tchernobyl et les explosions atomiques japonaises.
Les signes cliniques précurseurs que sont nausées, vomissements, céphalées, douleurs parotidiennes (glandes salivaires), sécheresse buccale et diarrhées, deviennent persistants avec des doses de plus en plus fortes (4 à 6 Gy). Pour des doses dépassant 10 Gy, le pronostic vital est généralement très réduit.
Dans le cas de doses non létales, le principal problème est d’ordre hématologique. La numération régulière de la formule sanguine permet généralement de suivre la décroissance des lymphocytes (globules blancs), suivie après plusieurs jours, de la chute des plaquettes, entre autres. Des aberrations chromosomiques peuvent également être observées par l’intermédiaire d’un caryotype réalisé à partir des lymphocytes, leur nombre étant fonction de la dose.

Cette étude des effets biologiques des R.I., appelée dosimétrie biologique, qui cherche à préciser les conditions d’irradiation (dose reçue et volume réellement irradié, notamment vis-à-vis de la protection de la moelle osseuse), constitue un examen d’autant plus important que la personne irradiée ne portait pas de dosimètre.

Les traitements appliqués pour des doses reçues ne permettant pas la réversibilité spontanée de la chute des lymphocytes par exemple sont généralement des transfusions de plaquettes ou de leucocytes  [3]. L’utilisation de facteurs de croissance hématopoïétiques peut aider au redémarrage des cellules de moelle osseuse et dans certains cas, des greffes de moelle peuvent être pratiquées.

Ceci nous amène donc à classer certains tissus en fonction de leur sensibilité vis-à-vis des rayonnements ionisants. D’une manière générale, les tissus à renouvellement rapide (divisions cellulaires nombreuses) sont les plus sensibles aux radiations et les effets produits sont alors précoces. Sont classés selon leur radiosensibilité décroissante les tissus suivants :

  • les tissus embryonnaires
  • les organes hématopoïétiques [4]
  • les gonades
  • l’épiderme
  • la muqueuse intestinale
  • le tissu conjonctif
  • le tissu musculaire
  • le tissu nerveux
+ radiosensibles
triangle
– radiosensibles

Au niveau des gonades, des stérilités temporaires ou permanentes à partir de certaines doses peuvent être observées. Chez l’embryon ou le fœtus, c’est le stade du développement qui conditionne les effets, à savoir que la radiosensibilité est maximale entre le 9ème et le 60ème jour. Les conséquences possibles sont la mort intra-utérine, l’apparition de malformations ou encore la mort néo-natale et post-natale. Passé le 60ème jour (croissance fœtale), ce sont des malformations nerveuses ou encore des cancers qui peuvent être ainsi induits.Après avoir vu les effets précoces d’une irradiation sur l’organisme, il convient de s’arrêter sur un deuxième type d’effets qui sont appelés stochastiques ou aléatoires. Ces effets se manifestent longtemps après l’irradiation (plusieurs années) et peuvent être causés soit par une irradiation aiguë soit par une exposition chronique à de faibles doses d’irradiation. Leur apparition chez un individu est d’autant moins probable que le niveau d’irradiation est faible, aussi n’apparaissent-ils pas systématiquement chez toutes les personnes irradiées.
Parmi ces effets, les cancers représentent certainement les conséquences les plus importantes de l’action des rayonnements ionisants et, dans une moindre mesure, l’apparition d’anomalies génétiques. Ces dernières résultent des lésions induites sur les chromosomes (ADN) de la lignée germinale (irradiation des gonades) pouvant entraîner des anomalies dans la descendance de l’individu irradié. Lorsque la molécule d’ADN est touchée, ceci engendre généralement des mutations qui peuvent apparaître dans les cellules-filles lors de la division cellulaire. Toutefois, il existe certains agents de protection comme les vitamines E et C, ainsi que des mécanismes de réparation de l’ADN, de même qu’il existe des systèmes de réparation cellulaire et tissulaire.En ce qui concerne le risque de développer un cancer ou d’être touché par une mutation génétique suite à une irradiation, celui-ci reste très délicat à évaluer, d’autant qu’il n’y a aucune forme de cancer spécifique des rayonnements ionisants et que l’étude de l’effet des faibles doses est loin d’être achevée.

La contamination

Définition

Comme l’irradiation, la contamination n’est pas un terme spécifique au corps humain et s’applique également à l’environnement : elle représente la présence d’une substance radioactive dans un milieu ou au contact d’une matière où elle est indésirable.
Concernant l’être humain, on parle de contamination lorsqu’un individu entre en contact direct avec une source radioactive et ce, de deux manières différentes, mais parfois simultanées :

  • par dépôt de substances radioactives (poussières) au niveau de l’épiderme ou des cheveux : c’est la contamination externe
  • par incorporation d’éléments radioactifs à l’intérieur de l’organisme : c’est la contamination interne. Les principales voies de pénétration sont :
    • la voie respiratoire
    • la voie directe par blessure
    • la voie digestive
    • la voie transcutanée

Une fois le dépôt effectué, la deuxième étape de la contamination correspond au transit du contaminant, depuis l’entrée (poumons, plaie, tube digestif) vers le sang. On comprend alors que les deux premières voies d’entrée sont les plus dangereuses et le plus souvent impliquées dans les accidents de contamination (importante vascularisation des bronchioles).
Vient ensuite l’intégration du contaminant dans le métabolisme : l’organisme va l’utiliser dans différents organes, dits critiques, de la même manière que ses homologues non radioactifs. Par exemple, la thyroïde fixe indifféremment l’iode stable ou l’iode radioactif. Parfois, c’est un autre élément qui est fixé à cause de la similitude de ses propriétés. C’est le cas du squelette qui fixe le strontium de la même manière que le calcium. On dit alors que le strontium est un mimétique du calcium. Parfois encore, il n’y a pas d’organe cible et l’élément diffuse dans tout le corps : c’est le cas du césium qui peut être fixé préférentiellement au potassium et se retrouver dans tous les muscles.

Lorsque la quantité de radionucléides incorporée est importante, on se comporte alors comme une véritable source et on émet des rayonnements sur notre entourage.

D’une manière générale, les accidents de contamination radioactive sont dus à une contamination préalable de l’environnement : habitations, sols et aliments comme dans les régions autour de Tchernobyl (Ukraine et Bélarus) ou au Brésil (Goiania-1987) où une source de radiothérapie de 50 TBq de césium 137 a été dispersée et a contaminé l’environnement et 100 000 personnes.

Irradiation interne

L’irradiation interne accompagne souvent la contamination et ce, à cause des corps radioactifs ingérés ou inhalés qui irradient de l’intérieur les organes sur lesquels ils se sont temporairement fixés. L’irradiation des tissus, qu’elle soit interne ou externe, produit le même type d’effets. En revanche, les rayonnements considérés comme les plus dangereux, ne sont plus les X et les gamma, mais les rayonnements dits particulaires. Les rayonnements particulaires (alpha et bêta) possèdent un pouvoir d’ionisation (Transfert d’Energie Linéique) plus élevé que celui des rayonnements électromagnétiques, aussi délivrent-ils de façon certaine toute leur énergie dans la matière qu’ils rencontrent et qui les arrête. En dosimétrie, la dose équivalente H (en Sievert, Sv) dépend directement de la nature du rayonnement puisque son calcul consiste en la multiplication de la dose absorbée (en Gray, Gy) par un facteur de pondération (Wr) caractéristique du rayonnement :

H(Sv) = D(Gy) * Wr

Wr est égal à 1 pour les bêta, gamma et X, alors qu’il est de 20 pour les alphas. Cela signifie que, pour une même énergie, le rayonnement  a est 20 fois plus radiotoxique que les autres.

Par exemple, dans le cas des isotopes gazeux du radon (radon 222 et radon 220), inhalés avec l’air ambiant, ce sont surtout les descendants, émetteurs alpha à vie courte (polonium 218, polonium 214 et bismuth 212), qui vont causer des dégâts aux cellules et qui peuvent, à terme, être la cause du développement d’un cancer du poumon. On estime les doses annuelles moyennes dues à l’inhalation des radon 222 et radon 220 et à leurs descendants à 60 et 10 µSv respectivement.

Conséquences

En ce qui concerne l’irradiation interne, les conséquences sont du même type que lors d’une irradiation externe, c’est-à-dire qu’il peut y avoir des effets au niveau cellulaire, tissulaire ou génétique. Ils peuvent se déclarer rapidement ou tardivement (cancérogènes), essentiellement en fonction de la dose et, mis à part dans les cas extrêmes comme à Goiania en 1987, on meurt rarement des suites d’une incorporation de radionucléides.
La différence avec l’irradiation réside dans la localisation des effets. En cas de contamination interne, il est possible de connaître la zone touchée si l’on connaît le radionucléide incorporé (fixation préférentielle). Les dégâts seront alors souvent localisés, au niveau d’un organe ou des tissus voisins. Enfin, à la différence de l’irradiation externe, souvent de courte durée, une contamination entraîne généralement une irradiation interne des tissus pendant un temps beaucoup plus long. Ce temps sera déterminé entre autres par deux facteurs : la période physique et la période biologique de l’élément incorporé (cf § suivant).

A la différence d’une source radioactive qui se trouve à distance d’un corps et contre les rayonnements de laquelle on peut se protéger, on voit qu’en cas de contamination interne, aucune protection n’est possible, puisqu’on est porteur de la source. Il existe pourtant des moyens de faire diminuer cette contamination, en éliminant directement la source qui continue d’émettre. Ces processus de décontamination n‘ont qu’une efficacité limitée, surtout devant des accidents de grande ampleur.

Décontamination

Lorsque la contamination est externe, on procède par lavages successifs de la zone touchée mais plus généralement du corps entier (douches). Si des poussières sont en cause, des adhésifs sont parfois utilisés pour récupérer les contaminants, dans les deux cas, les eaux de lavage comme les produits utilisés doivent être gérés comme des déchets radioactifs.
Lorsque la contamination est interne, le but est de faire migrer les particules radioactives vers les voies d’élimination naturelles. L’efficacité des traitements va surtout dépendre de la précocité de l’intervention mais également des propriétés du contaminant.
On sait que chaque radionucléide se désintègre au cours d’un période radioactive qui lui est propre. Beaucoup d’entre eux ont des périodes trop longues pour ne compter que sur le temps pour que l’activité disparaisse. De plus, dans le corps humain, chaque radionucléide possède une période biologique  [5]. Par la combinaison de ces deux facteurs (période physique et biologique), on peut définir la période effective, comme le temps au bout duquel la quantité de contaminant dans l’organisme est divisée par deux. Te = (Tb*Tp)/(Tb+Tp)

Te : période effective ; Tb : période biologique ; Tp : période physique.

Exemples :

période radioactive période biologique période effective
iode 131
8 jours
30 jours (thyroïde)
6,3 jours
plutonium 239
24000 ans
100 ans (os)
~100 ans

Dans le cas particulier de la médecine nucléaire où des sources de radionucléides sont injectées à des patients après l’intervention, on cherche à forcer l’élimination par les voies naturelles. Ainsi, après une scintigraphie thyroïdienne pour laquelle on aura reçu 20 MBq de Technétium 99m, il faudra boire beaucoup d’eau pour que l’élimination par les voies urinaires soit la plus rapide possible. On limitera également le temps de contact avec l’entourage, pendant lequel on peut représenter un danger, surtout auprès des enfants.Enfin, on peut noter l’existence, pour certains radionucléides particuliers, de traitements médicaux plus poussés, dont le principe est de déloger le radionucléide de l’emplacement où il s’est fixé : on nomme ceci la décorporation. On peut citer par exemple comme agent décorporant, le Bleu de Prusse, qui a été utilisé suite à l’accident de Goiania au Brésil en 1987 et qui a permis d’éliminer notablement le césium des personnes contaminées.GLOSSAIRE :

  • Activité : Nombre de transformations nucléaires spontanées qui se produisent dans une quantité d’un radionucléide pendant, un certain temps. Dans le système international, l’unité d’activité d’une source radioactive est le  becquerel (unité standard de mesure de la radioactivité équivalent à une désintégration par seconde).
  • Dose absorbée : Quantité d’énergie absorbée par la matière vivante ou inerte et par unité de masse. L’unité de dose absorbée est le gray : dose absorbée dans une masse de matière de 1 kilogramme à laquelle les rayonnements ionisants communiquent en moyenne, de façon uniforme, une énergie de 1 joule.
  • Dose efficace : Pour les besoins de la radioprotection on définit une grandeur appelée dose efficace qui essaie de tenir compte, chez l’homme, des dommages radiologiques occasionnés. Une même dose de rayonnement ne provoque pas les mêmes dommages suivant qu’il s’agit d’irradiation ou de contamination, suivant le type de rayonnement (alpha, bêta ou gamma) et enfin suivant la nature des tissus touchés. L’unité est le sievert (pour les rayonnements gamma et beta, Wr =1) ; La réglementation européenne fixe une limite annuelle d’exposition de 1mSv/an pour le public ; cette limite a été transposée en droit national en mars 2001.

[1]  Criticité : conditions dans lesquelles un système est capable d’entretenir une réaction en chaîne.
[2] 0.7 sievert délivrés en une seule fois : dose seuil au-delà de laquelle l’apparition d’un effet précoce est certaine.
[3] Leucocytes : terme général désignant les globules blancs, parmi lesquels on trouve les lymphocytes.
[4] A l’origine des cellules sanguines.
[5] Temps au bout duquel l’organisme élimine la moitié de la radioactivité incorporée.

Ancien lien

Des nouvelles de la commission Tchernobyl

Article paru dans l’ACROnique du nucléaire 61 de juin 2003


Ce groupe de travail a été constitué à la demande du Ministre de l’Environnement et du Ministre de la santé du précédent gouvernement et confirmé par le gouvernement actuel. “Sa mission est d’établir une cartographie de la contamination du territoire français suite à l’accident de Tchernobyl, d’étudier la modélisation de la contamination du territoire en 1986 et d’essayer d’en déduire les doses et les risques correspondants avec une appréciation sur les incertitudes de cette étude”. Après des discussions et un vote du Conseil d’Administration (CA), l’ACRO a finalement décidé de répondre favorablement à la demande du professeur Aurengo de participer à ce groupe de travail.Le débat au sein de l’association, long de près d’un an, a été riche. Inspiré par les enseignements tirés de notre participation au Groupe Radioécologique Nord Cotentin, les positions étaient diverses. Pour finir une majorité en faveur d’une participation s’est dégagée : l’Acro étant née à la suite de la catastrophe de Tchernobyl, un refus paraissait aberrant. Même si nous avions été choqués par l’exploitation médiatique faite autour des conclusions du GRNC, nous ne voulions pas faire de procès d’intention à cette nouvelle commission et voulions croire à sa “bonne foi”. Sans se faire trop d’illusions, il ne faut pas pécher par naïveté devant les intentions de nos dirigeants. Participer permet, également, de rester en contact avec les sources d’information et de la retransmettre. Par ailleurs, les conditions de la présence de l’Acro ont été clairement posées en CA : prudence quant à la nature et au sérieux du travail demandé, départ immédiat si le rapport aux ministres devait être établi dans les six mois. Toutes les réserves exprimées en CA ont été relayées lors de la première réunion de la commission, de fait, il a été clairement stipulé dans le premier compte-rendu : “[…] qu’il ne sera probablement pas possible de répondre à toutes les questions posées et qu’il sera nécessaire d’élaborer un cahier des charges précis de l’activité du groupe, en expliquant clairement pourquoi certaines questions resteront sans réponse. Qu’il apparaît difficile voire impossible de balayer l’ensemble des questions relatives à l’accident de Tchernobyl en France, de la contamination aux éventuelles conséquences sanitaires en six mois. Le groupe a décidé de procéder étape par étape, avec des rapports intermédiaires, sans avoir l’objectif irréaliste de traiter toutes les questions trop rapidement […]”. Nous vous tiendrons informés des activités de cette commission dès qu’elle aura avancé ses travaux…

La participation aux commissions, une question de fond dans la mouvance associative. Le débat sur la participation aux commissions ne se fait pas qu’à l’intérieur d’une association, c’est une question de fond dans la mouvance associative. Lors d’un contact avec l’association des malades de la thyroïde nous avions été confortés dans notre décision de participer, même si cette association refusait de faire partie du groupe de travail sur Tchernobyl, elle nous conseillait d’y aller.

Du débat à la querelle publique…

Par contre nous avons été profondément choqués par l’attitude de la CRIIRAD : celle-ci ne veut pas participer à cette commission, nous reconnaissons son droit le plus strict à être le seul maître de ses choix. A l’ACRO nous déplorons seulement que le seul travail de contre-expertise d’envergure ne soit pas présenté par l’association maître d’œuvre. En revanche nous n’acceptons pas son attitude envers notre association. En effet, dans le courrier que la Criirad a adressé à tous les membres de la “commission Tchernobyl” nous avons été pris à partie de façon inacceptable. Les propos tenus sont insultants et mensongers. Nous regrettons profondément que dans le domaine associatif certains se trompent d’ennemis et ainsi, en faisant les “choux gras” d’un certain nombre de nucléocrates, contribuent à décrédibiliser une action associative. Refuser la diversité des points de vue est une attitude profondément intolérante, qui aurait plutôt pour effet de stériliser le débat et non de l’enrichir. Pour vous faire votre propre avis, vous trouverez à la suite,l’extrait de la lettre envoyée par la Criirad au groupe de travail sur Tchernobyl qui nous met en cause, puis notre réponse.

Extrait de la lettre de la Directrice de la CRIIRAD

en date du 05 mars 2003

 (la lettre complete est maintenant disponible sur le site Internet de la CRII-Rad)

à l’attention du Pr AURENGO et des membres du groupe de travail sur l’impact de Tchernobyl en France

[…] Par ailleurs, nous avons noté que 2 membres de l’ACRO font partie du groupe de travail. Compte tenu des problèmes rencontrés dans le passé (1),il nous paraît utile de dissiper les malentendus qui pourrait surgir, notamment lors de la communication des conclusions de vos travaux. L’ACRO ne représente ni le milieu associatif, ni les “laboratoires indépendants”. Par ailleurs, qu’il s’agisse de Tchernobyl ou de la finalité d’un laboratoire indépendant, la CRIIRAD est en désaccord avec les positions défendues par l’ACRO (notamment celles qui sont présentées en introduction de l’article publié dans la revue de la DGSNR(2)).

J’espère que ce courrier pourra vous éclairer sur notre position et que les décisions que vous prendrez. Dans tous les cas nous suivrons avec intérêt vos travaux et nous ne manquerons pas d’en étudier les conclusions.

Pour la CRIIRAD
La directrice
Corinne Castagnier

(1) Cf. notamment : 1. signature des conclusions du groupe radioécologie nord-Cotentin (GRNC). La CRIIRAD a refuser de le faire, étant en désaccord sur le fond. Cela n’a pas empêché la Cogéma de communiquer sur l’unanimité des conclusions, en insistant sur la présence du milieu associatif ;
2. l’avis favorable donné par un collège de 5 experts (donc 1 responsable de l’ACRO) sur la recevabilité du dossier établi par la Cogéma pour ses installations de La Hague. Là encore, la signature de l ACRO a été utilisé par le gouvernement et les services officiels pour souligner les progrès démocratiques liés à la participation du milieu associatif (alors que la conséquence concrète de cet avis favorable a été de priver la population de l’enquête publique à laquelle elle avait droit).

(2) “la surveillance de l’environnement exercée par une association indépendante : l’ACRO” ; Revue Contrôle n°149. novembre 2002.

 

Lettre Ouverte au Conseil d’administration de la CRIIRAD

 

Nous avons pris connaissance de la lettre envoyée par la Directrice de la CRIIRAD aux membres du groupe de travail sur l’impact de Tchernobyl en France, présidé par le Pr Aurengo. Il y est consacré un paragraphe à l’ACRO (reproduit in extenso in fine) qui a attiré notre attention et mérite clarification.

1 L’ACRO n’a jamais eu la prétention de représenter le milieu associatif, les “laboratoires indépendants”, ou la CRIIRAD. Il va sans dire que nous ne sommes en rien responsables des expressions employées par les services officiels ou les exploitants à la suite des travaux du Groupe Radioécologie Nord-Cotentin (GRNC). Nous vous rappelons que, suite à la manipulation médiatique qui a précédé la présentation des résultats du GRNC (mission 1), l’ACRO a réagi immédiatement avec la démission de son représentant au Comité plénier. En revanche, quand nous présentons ces résultats, nous prenons soin de préciser que la CRIIRAD n’était pas signataire des conclusions (Voir l’ACROnique du nucléaire n°47, décembre 1999). Nous vous prions de noter que nous avons aussi publié les réserves du GSIEN qui était signataire, comme l’ACRO.

2 Concernant l’enquête publique Cogéma qui a suivi, nous ne comprenons pas votre remarque, puisque l’enquête a bien eu lieu. Mieux, à la demande de plusieurs associations (dont l’ACRO) au sein de la CSPI, la durée de l’enquête a été prolongée de 2 mois par l’ASN (Autorité de Sûreté Nucléaire). Nous sommes d’autant plus étonnés de votre remarque que la CRIIRAD s’est vue remettre un exemplaire du dossier soumis à la population. Nous avons, quant à nous, publié une étude très critique de ce dossier (voir l’ACROnique du nucléaire n°49, juin 2000 ; rapport également disponible sur notre site internet) qui a été remis à la commission d’enquête. Nous avons eu l’occasion de revenir plusieurs fois sur les conséquences de cette enquête (voir nos communiqués de presse). Ce n’est pas parce que la CRIIRAD a choisi de ne pas y participer que l’enquête publique n’a pas eu lieu.

3 Vous renouvelez votre critique vis à vis du “Groupe d’experts sur la recevabilité” que vous aviez exprimé lors de cette enquête publique indiquant que les experts (dont le conseiller scientifique de l’ACRO) “auront à rendre des comptes”. Bien que le Groupe ait pris le soin de mentionner dans sa conclusion que “la recevabilité ne doit pas être confondue avec l’acceptabilité” et d’expliciter son rôle qui n’était en rien de se substituer à la consultation de l’opinion publique, vous continuez à entretenir cette confusion en des termes qui nous laissent penser que vous avez dû faire une lecture pour le moins rapide du rapport du Groupe d’experts mais aussi du dossier versé par l’ACRO à l’enquête publique.

4 Enfin, vous affirmez être en désaccord avec nos positions. Notre parole n’engage que nous, comme nous ne nous considérons pas engagés par vos positions. Pour autant, vous noterez que l’ACRO mentionne toujours dans ses interventions (i.e. Contrôle n°149) que des laboratoires indépendants sont nés à la suite de la catastrophe de Tchernobyl. La CRIIRAD n’a pas le monopole du statut de “laboratoire indépendant”. Vous semblez le déplorer. Nous pensons que c’est une richesse qu’il puisse y avoir en France deux laboratoires indépendants avec deux approches différentes. Nous respectons votre choix de ne pas participer aux instances de concertation, nous vous prions de respecter le nôtre. Ne vous trompez pas de combat.

Le Conseil d’Administration de l’ACRO

Ancien Lien

Deuxième mission du Groupe Radio-écologie Nord-Cotentin

Le calcul d’incertitude

David Boilley, représentant de l’ACRO dans ce goupe de travail, ACROnique du nucléaire n°60, mars 2003


Dans la première phase de ses travaux, le Groupe Radioécologie Nord Cotentin (GRNC) avait estimé le nombre de cas de leucémie chez les jeunes de 0 à 24 ans vivant dans le canton de Beaumont-Hague attribuables aux rejets radioactifs des installations nucléaires et avait obtenu 0,002 cas environ pour la période 1978-1996 et la population considérée (Voir l’ACROnique du nucléaire n°47 de décembre 1999). Dans ces commentaires, l’ACRO avait tenu à souligner que « Notre principale réserve porte sur la démarche ” réaliste ” retenue par le Comité pour la reconstitution des doses reçues par la cohorte et le risque qui en découle. Nous continuons à penser qu’en matière de radioprotection, toute évaluation d’impact sanitaire doit être menée de façon conservatrice car en l’absence de la mesure précise de l’incertitude liée au calcul ” réaliste “, seul la démarche ” enveloppe ” garanti qu’elle contient la vraie valeur de l’impact. » C’est à dire, quand il y a plusieurs valeurs possibles pour un paramètre, on prend la valeur la plus pénalisante. Si le risque calculé est satisfaisant, alors le risque réel, forcément inférieur, le sera aussi.

En effet, le calcul repose sur de très nombreux paramètres théoriques mal maîtrisés : quelle est la quantité rejetée en mer par an, quel est le taux de concentration de chacun des 71 radio-éléments dans les poissons, mollusques…, quel est le régime alimentaire de la population locale ? Parfois, ces paramètres reposent sur des longues séries de mesures locales qui permettent d’avoir confiance. Dans d’autres cas, le choix s’est fait de manière arbitraire en choisissant une valeur plutôt qu’une autre relevée dans la littérature scientifique internationale. Le résultat de la première phase des travaux du GRNC correspond à la meilleure estimation possible en l’état des connaissances.

Ne nous sommes pas trompes dans le calcul ? Quel aurait été le résultat si on avait choisi un autre jeu de paramètres ? C’est dans le but de répondre à ces questions qu’un groupe de travail a conduit une « analyse de sensibilité et d’incertitude sur le risque de leucémie attribuable aux installations nucléaires du Nord-Cotentin » (Le rapport sera disponible en ligne à http://www.irsn.fr/nord-cotentin). Un représentant de l’ACRO a participé aux travaux, mais n’a pas signé le rapport.

« Un groupe de travail (GT) de l’IPSN sur les incertitudes a été mis en place dès janvier 2000. […] Le 24 juillet 2000, le Ministre délégué à la Santé et la Ministre de l’Aménagement du Territoire et de l’Environnement ont adressé une lettre de mission au GRNC lui demandant de réaliser une analyse de sensibilité et d’incertitude portant sur les paramètres principaux de l’estimation du risque de leucémie attribuable aux installations nucléaires du Nord-Cotentin. En octobre 2000, le groupe de travail a donc été placé sous l’autorité du GRNC et élargi à des experts extérieurs à l’IPSN (associatifs, exploitants, institutionnels). » (Les citations sont extraites du rapport du groupe de travail). Lorsque l’ACRO a été invitée à participer, les travaux de ce groupe de travail étaient déjà bien avancés et il n’a pas été possible de revenir sur certains choix faits en interne.

« Dans cette étude, les sources d’incertitude considérées par le GT « Incertitudes », conformément à sa mission, sont celles relatives aux paramètres. En conséquence, les modèles ne sont pas remis en cause. Une fois quantifiées les incertitudes de chacun de ces paramètres, il faut examiner comment elles se combinent pour produire l’incertitude sur le risque. » Ce choix limite énormément la portée de l’étude car le modèle de dispersion atmosphérique utilisé est notoirement faux. L’analyse par l’ACRO des incidents ruthénium est venue le confirmer. Cependant, faute de meilleur modèle, il n’est pas possible à l’heure actuelle de faire mieux.

« Le grand nombre de paramètres intervenant dans la procédure de calcul du risque collectif (plusieurs milliers), exclut que l’incertitude soit évaluée pour chacun d’entre eux. Le GT « Incertitudes » a donc dû limiter le champ de l’étude et identifier les paramètres prépondérants pour lesquels l’incertitude devra être précisée. La démarche requiert plusieurs étapes :

  • délimiter le champ de l’étude par rapport à celui couvert dans la première mission du GRNC, par exemple en se limitant aux rejets de routine des installations nucléaires,
  • identifier ensuite les paramètres prépondérants (paramètres relatifs aux rejets, au mode de vie, paramètres de transfert, …) dans le calcul du risque collectif. A partir du travail réalisé par le GRNC lors de sa première mission, le GT « Incertitudes » doit identifier les radionucléides prépondérants pour lesquels il est nécessaire de déterminer l’incertitude qui leur est associée parmi l’ensemble des radionucléides (32 dans les rejets gazeux et 71 dans les rejets liquides),
  • déterminer pour chaque paramètre sa gamme de variation et réaliser une analyse de sensibilité. »

Délimitation du champ de l’étude

Population ciblée : la cohorte, c’est à dire l’ensemble des jeunes de 0 à 24 ans ayant vécu dans le canton de Beaumont-Hague entre 1978 et 1996. « Par définition de la cohorte, les individus qui la constituent ne présentent pas de modes de vie particuliers. En ce sens, ils sont considérés comme des individus « moyens » au sein de leur classe d’âge. »

« L’étude présente ne traite que du risque collectif de leucémie ex utero associé aux rejets de routine des installations industrielles nucléaires du Nord-Cotentin (0,0009 cas sur la période considérée). L’incertitude sur la contribution au risque collectif des incidents et accidents des installations nucléaires (notamment le percement de la conduite de rejet en mer survenu en 1979-1980 et l’incendie du silo de déchets du 6 janvier 1981, pour l’usine de retraitement de La Hague) n’a pas été considérée. » Cette limitation est conséquente car seuls 45% du risque sont donc pris en compte par l’étude, les « incidents » ayant une part non négligeable. Par ailleurs, « l’incertitude sur le risque in utero n’est pas considérée dans ce travail. Dans son rapport, le GRNC avait souligné le caractère provisoire des modélisations utilisées pour le calcul du risque in utero [GRNC, 1999]. Il faudra donc vraisemblablement revenir sur l’évaluation effectuée avant d’envisager une étude d’incertitude sur ce point. »

« Les coefficients de dose permettent de passer des activités présentes dans l’environnement ou dans les produits alimentaires aux doses. » Ce sont donc les paramètres les moins bien connus car ils permettent de quantifier les effets des radiations sur la santé.  « Pour les calculs de dose et de risque, le GRNC a utilisé des modèles basés sur les meilleures connaissances scientifiques, adoptés au plan international et donnant lieu à des analyses critiques et à des évolutions en fonction des nouvelles connaissances acquises. Il n’entrait pas dans le cadre de la mission du GRNC de les remettre en cause. Il faut souligner également que les valeurs fournies dans la littérature internationale ne sont pas accompagnées d’incertitudes » Ces coefficients ne varieront pas, c’est le domaine réservé des experts de la CIPR (Commission Internationale de Protection Radiologique dont les recommandations servent à définir les règles de radioprotection).

« Une prise en compte rigoureuse des filiations radioactives nécessiterait une étude à part entière. A ce stade, les filiations radioactives ne sont pas prises en compte. » Le modèle d’exposition aux embruns a été fixé car son application au site de La Hague est douteuse. Faire varier ses paramètres aurait pu laisser entendre qu’on lui accordait une certaine confiance. Enfin, la granulométrie des aérosols a été fixée.

A l’exception des embruns, tous ces choix étaient fixés quand le GT a été ouvert aux représentants associatifs et il n’a pas été possible de revenir dessus.

Méthodologie

« La sélection des paramètres prépondérants a été effectuée en examinant les différentes étapes du transfert jusqu’à l’homme. » On appelle « voie d’atteinte » le chemin d’un élément depuis l’exutoire jusqu’à l’homme. Par exemple, « l’ingestion de produits marins contaminés » ou « l’inhalation de rejets gazeux ». 16 voies d’atteintes sont prises en compte par le GRNC. « Un radionucléide au sein d’une voie d’atteinte est considéré comme prépondérant si sa contribution au risque collectif est supérieure à 0,5 % ou en absolu supérieure à 4,5.10-6. Ce seuil de 0,5 % permet d’éviter une perte importante en termes de risque collectif quand on somme les contributions au risque collectif des radionucléides ainsi retenus. Au sens de ce critère, seuls 23 radionucléides restent à considérer. Ils contribuent, toutes voies d’atteinte confondues, à 95 % du risque collectif. Un paramètre de transfert ou un paramètre mode de vie au sein d’une voie d’atteinte est considéré comme prépondérant si sa contribution au risque collectif est supérieure à 0,15 % ou en absolu supérieure à 1,5.10-6. »

Une fois ces paramètres prépondérants déterminés, il a fallu pour chacun d’entre eux estimer l’intervalle de variation et la probabilité d’obtenir une valeur donnée. Cela a constitué l’essentiel des discussions lors des réunions de travail. Dans certains cas, de longues séries de mesures permettent d’estimer de manière assez fiable cet intervalle. Dans d’autres cas, le choix est purement arbitraire. Pour les régimes alimentaires, par exemple, la consommation moyenne a été multipliée par deux pour obtenir le maximum et divisée par deux pour obtenir le minimum. Cela s’appelle un « jugement d’expert » !

Analyse d’incertitude

Comment les incertitudes sur chacun des paramètres se combinent-elles pour donner l’intervalle de variation du risque total ? Il y a plusieurs méthodes de calcul possibles. L’IRSN en a considéré trois, sans que cela soit vraiment discuté dans le groupe de travail.

Méthode probabiliste : chaque paramètre incertain est tiré aléatoirement dans l’intervalle qui lui est assigné, puis un calcul de risque est effectué. L’opération est renouvelée 1000 fois pour obtenir l’intervalle de variation du risque. Cette méthode, dite de Monte-Carlo, a l’avantage d’être très simple à mettre en œuvre et conduit à un « intervalle de valeurs comprises entre 1,1 et 2,7 fois le risque de référence (soit 0,001 à 0,0024 cas de leucémie) ». Ce résultat est beaucoup plus étroit que l’incertitude des paramètres pris individuellement, ce qui peut surprendre. Cela est dû à la méthode de calcul utilisée. Pour comprendre, prenons le cas des dés : il est difficile de tirer deux six de suite. La probabilité d’en tirer une dizaine de suite est excessivement faible. C’est pareil ici. Si on combine dix paramètres tirés aléatoirement, on aura à peu près autant de valeurs élevées que de valeurs faibles pour un résultat global très moyen. L’étroitesse du résultat est donc due au grand nombre de paramètres qui entrent en jeu dans le calcul de risque. Par cette méthode, il est impossible d’aller explorer des situations extrêmes.

Méthode possibiliste : « Le principe de la méthode « possibiliste » est de décomposer le risque en composants élémentaires. Ceux-ci sont définis comme étant la contribution au risque par classe d’âge, par voie d’atteinte, et éventuellement par produit alimentaire. » Les risques de chaque élément s’ajoutent et ne se combinent pas comme précédemment. Le risque maximum (ou minimum) de chaque élément est additionné pour obtenir le risque maximum (ou minimum) global. Il est en effet raisonnable de penser que l’erreur sur l’atteinte due à l’ingestion de produits marins ne vienne pas compenser l’erreur sur l’atteinte due à l’ingestion de produits laitiers par exemple. « L’incertitude sur chacun de ces 115 composants élémentaires est évaluée par la méthode « probabiliste » de Monte-Carlo. » En effet, l’incertitude sur la concentration en radio-éléments à l’intérieur d’un produit marin n’a rien avoir avec l’incertitude sur le régime alimentaire du consommateur. Cette méthode « possibiliste, conduit à un intervalle de valeurs comprises entre 0,4 et 5 fois le risque de référence (soit 0,0004 à 0,0045 cas de leucémie) » qui est plus large que pour la méthode probabiliste.

Méthode maximaliste : chaque paramètre est fixé à son maximum (ou à son minimum) ce qui permet d’obtenir les valeurs les plus extrêmes. Cela correspond à la démarche enveloppe réclamée par l’ACRO lors de la première phase des travaux. Cette méthode « conduit à un intervalle de valeurs comprises entre 0,1 et 30 fois la valeur de référence (soit 0,00009 à 0,027 cas de leucémie) ».

Conclusion de l’étude : « Toutes ces valeurs restent très inférieures au nombre de cas de leucémies observées pour la même population et la même période (4 cas observés pour 2 cas attendus) et au risque de leucémie radio-induite toutes sources d’exposition confondues (naturelles, médicales, industrielles), soit 0,84 cas. Il apparaît donc peu probable que les installations nucléaires du Nord-Cotentin puissent expliquer la tendance à l’excès de leucémies observée.
Il faut, à ce stade, rappeler les limitations de l’étude d’incertitude réalisée qui n’inclut pas le risque lié aux incidents et accidents (inférieur à 0,0012 cas) ni le risque associé à l’exposition in utero (0,0003 cas). Le fait de les prendre en compte ne modifiera pas vraiment la largeur des intervalles de variation donnés ci-dessus.
Une autre limitation doit être soulignée. Les incertitudes associées aux coefficients de dose et de risque n’ont pas été considérées car il n’existe pas actuellement de documents agréés au plan scientifique sur les incertitudes qui accompagnent ces coefficients.
Réaliser une étude d’incertitude d’une telle ampleur dans le domaine de l’évaluation des impacts radiologiques est exemplaire à plusieurs titres : la diversité des modèles, le traitement de plusieurs centaines de paramètres, la mise en œuvre de plusieurs méthodes de quantification de l’incertitude. En termes de connaissances acquises, le travail effectué pour préciser les intervalles de variation et les distributions des paramètres a permis de constituer une base de données unique pour les futures études de sensibilité et d’incertitude. Enfin, dans une perspective de recherche, la réflexion sur la théorie des possibilités appliquée à ce type d’évaluation mériterait d’être poursuivie.»

Commentaires du participant de l’ACRO

« Concernant l’évaluation de l’incertitude sur le nombre de cas de leucémies calculé à partir des modèles de transfert dans l’environnement des rejets des installations nucléaires de la région, l’IPSN avait inscrit cette thématique dans ses programmes de recherche et l’a engagée au sein d’un groupe de travail interne. Ce travail a ensuite été confirmé par une lettre de mission des ministres de l’environnement et de la santé au cours de l’été 2000 et il a donc été décidé d’ouvrir ce groupe de travail aux exploitants et à des représentants du mouvement associatif. L’ACRO a été invitée à y participer au début de l’année 2001.

Ainsi, lorsqu’il a été décidé d’associer des membres du mouvement associatif, le travail était déjà très avancé. Il leur a été proposé de rediscuter les intervalles de variation d’une partie des paramètres entrant dans les modèles et c’est tout. Cela ne suffit pas pour se considérer acteur de l’étude. En conséquence, dès le mois de juin 2001, la présidente du GRNC a été informée que nous ne signerons pas un tel document que nous considérons plutôt comme un « rapport IPSN ».

Sur le fond, nous reconnaissons la difficulté et l’ampleur du travail accompli. Il est cependant important de noter que l’étude ne porte que sur moins de la moitié du risque théorique associé aux rejets radioactifs. Dans un premier temps, seuls les rejets de routine ont été pris en compte. Or, pour les incidents, l’erreur pourrait être beaucoup plus élevée. La seule prise en compte de 11 mesures de strontium 90 « oubliées » lors de la première mission, a conduit le GRNC à réévaluer d’un facteur 7 la dose collective reçue lors du percement de la conduite en 1979/80. Autre exemple plus récent, lors des incidents ruthénium de 2001, l’action de surveillance de l’ACRO a permis d’observer que l’incertitude sur le terme source était de trois ordres de grandeur (c’est à dire d’un facteur 1000).

Les limites de l’étude doivent être soulignées. Elle s’attache pour l’essentiel à l’impact environnemental des rejets de routine et aux modes de vie et refuse d’aborder tout ce qui touche aux effets sur la santé des rayonnements. C’est pourtant là encore une partie sujette à de larges approximations qui retentissent directement sur cette marge d’incertitude.

Sur ce chapitre, le travail fait par le GTI ne permet pas de conclure quant à l’innocuité des rejets radioactifs. Il n’en demeure pas moins important, car il donne une idée de l’ampleur de l’impact environnemental théorique des rejets de routine. Ainsi le travail effectué pourrait être très facilement transposé aux calculs de dose effectués par l’exploitant dans son dossier soumis à enquête publique en 2000. » (Ces commentaires font partie intégrante du rapport de synthèse de la deuxième mission du GRNC).


Liens

Ancien Lien

Des fissures dans la filière plutonium au Japon

Lettre d’information du réseau sortir du nucléaire n°20, janvier-février 2003.


Un nouveau scandale vient de secouer l’industrie nucléaire japonaise [1] : Tokyo Electric Power Co. (TEPCO), aurait falsifié 37 rapports de sûreté depuis la fin des années 80. Cela concerne 13 des 17 réacteurs de la première compagnie d’électricité du pays et plusieurs d’entre eux fonctionnent actuellement avec des fissures et de nombreuses autres anomalies. Par exemple, en juin 1994, TEPCO avait annoncé une fissure de 2,3 m dans l’enveloppe du réacteur n°1 de Fukushima en minimisant le nombre total de fissures. La cuve a ensuite été changée en 1998. Quand des inspecteurs gouvernementaux sont venus inspecter l’ancienne cuve, les fissures non-révélées ont été cachées sous des feuilles plastiques. Un rapport de l’agence pour la sûreté nucléaire et industrielle fait aussi état de cas particulièrement « malicieux » où des pièces métalliques ou de la peinture ont été utilisées pour dissimuler les parties endommagées ou réparées en secret, notamment sur le circuit de refroidissement primaire. La compagnie a reconnu les dissimulations. Les quatre principaux dirigeants ont donné leur démission et de nombreux cadres ont été rétrogradés.

Réactions en chaîne

Devant l’ampleur du scandale, des langues se sont déliées. D’autres compagnies d’électricité ont admis avoir falsifié des rapports de sûreté ou omis de mentionner des défauts dans les réacteurs. Tohoku Electric Power Co a ainsi considéré qu’il n’était pas nécessaire de signaler les fissures détectées dans le circuit de refroidissement de la centrale d’Onagawa, sous prétexte qu’elles ne posaient aucun risque en termes de sûreté. Des sous-traitants comme Hitachi et Toshiba ont reconnu avoir falsifié des rapports d’inspection à la demande de leurs clients. La nouvelle révélation la plus grave concerne probablement à nouveau TEPCO qui est soupçonnée d’avoir fabriqué des données de contrôle d’herméticité de ces réacteurs. Il s’agit là d’une accusation bien plus grave que les fissures dissimulées, car cela concerne l’enceinte de confinement supposée retenir la radioactivité en cas d’accident. Les contrôles sont classés au niveau le plus haut par l’autorité de sûreté. Cela n’a pas empêché TEPCO d’inventer des séries de données quand les mesures auraient pu alarmer les inspecteurs ou trafiquer un instrument de mesure afin qu’il donne un taux de fuite faible. Lors d’une inspection, elle a pompé secrètement de l’air à l’intérieur du réacteur pour compenser la fuite connue, de façon à ce que le taux de fuite mesuré satisfasse les normes.

L’association anti-nucléaire Mihama, a aussi reçu des documents internes à TEPCO montrant qu’une fuite de plutonium et d’autres radioéléments avait contaminé l’environnement de la centrale de Fukushima entre 1979 et 1981, sans que les autorités ou la population locale ne soient prévenus [2]. La compagnie a reconnu la fuite, mais en minimise les conséquences, comme d’habitude.

Un régime de complaisance

C’est un ancien travailleur de General Electric International qui, en juillet 2000, a alerté l’autorité de sûreté. Celle-ci a d’abord fait la sourde oreille, seule une question orale a été posée à TEPCO. Quand il a proposé de coopérer, son offre a d’abord été refusée. Il a fallu six mois aux autorités pour demander des comptes par écrit à TEPCO et elles ont transmis une copie des courriers de l’informateur, avec son identité ! Donner son nom est une faute grave, d’autant plus qu’il avait demandé à rester anonyme pour pouvoir retrouver du travail. L’autorité de sûreté est aussi accusée de lenteur et d’inefficacité, ce qui a conduit le ministre de l’industrie à reconnaître que « deux ans c’est trop long. » Quand le scandale a éclaté, le ministre s’est dit scandalisé que TEPCO ait trahi la confiance du public alors que l’énergie nucléaire est un des piliers de la politique énergétique de la nation. Cela devrait retarder l’introduction du MOx dans la centrale de Kashiwazaki-Kariwa, un maillon important de la politique gouvernementale du combustible nucléaire.

Aux dernières nouvelles, les 4 dirigeants démissionnaires de TEPCO seraient réintégrés comme conseillés avec tous les avantages matériels…

La population inquiète

Les premières révélations ont eu lieu à la fin août 2002 et d’autres ont suivi durant tout l’automne. La population, sondée par la presse, se dit très inquiète par la situation dans laquelle se trouve le parc électronucléaire du pays. Tout le monde se souvient que l’explosion qui avait eu lieu à Tokaimura dans une usine de conversion d’uranium [3], un des accidents les plus graves de l’industrie nucléaire, était due essentiellement au laxisme des exploitants qui n’avaient pas respecté les règles de sûreté. Plus de 600 personnes avaient été irradiées et des riverains viennent de porter plainte pour obtenir des compensations [4]. Les municipalités et provinces concernées par TEPCO ont donc demandé l’arrêt des réacteurs suspectés et l’abandon du programme « pluthermal » qui vise à l’introduction de combustible MOX. Fin octobre, 10 des 17 réacteurs de TEPCO sont à l’arrêt, suite au scandale ou à des inspections de routine, sans que l’alimentation électrique de la capitale ne soit perturbée.

La filière plutonium remise en cause

Le Japon est en train de finir la construction d’une usine de retraitement des combustibles irradiés à Rokkasho dans le nord de l’île principale pour en extraire du plutonium. Cette usine, dont les premiers tests devraient avoir lieu en 2003, est prévue pour prendre le relais de l’usine de La Hague, en France, pour la production nationale. Pourtant, le pays ne dispose actuellement d’aucun débouché pour le plutonium. Le surgénérateur Monju est arrêté depuis 1995 suite à une fuite de sodium et une falsification du rapport d’expertise de l’accident en 1997. Le programme MOX, qui vise à introduire du plutonium mélangé à de l’uranium dans des réacteurs ordinaires, vient de subir de nouveaux revers. Kansai Electric Power Co. (KEPCO) qui prévoyait aussi d’introduire du MOX dans ses réacteurs a dû y renoncer suite au scandale concernant la falsification des données de contrôle par le producteur, British Nuclear Fuel Limited (BNFL) [5]. Le combustible incriminé a été renvoyé en Grande-Bretagne cet été. KEPCO a également demandé à COGEMA de suspendre la fabrication du combustible MOX pour sa centrale de Takahama, parce que le fabriquant ne pouvait pas démontrer que les assemblages satisfaisaient les nouvelles règles établies par le gouvernement japonais [6]. La pression politique s’était donc intensifiée sur les municipalités et régions concernées par les centrales de Fukushima et Kashiwazaki-Kariwa, gérées par TEPCO, pour qu’elles acceptent que le MOX soit chargé. Suite à ce nouveau scandale, la compagnie s’est résignée à repousser sine die l’introduction du MOX dans ses réacteurs.

Du plutonium militaire ?

L’acharnement du gouvernement japonais à développer sa filière plutonium malgré les nombreux revers subis peut surprendre. En plus de l’introduction du MOX, il espère aussi redémarrer le surgénérateur de Monju capable de transformer du plutonium « civil » en plutonium « militaire ». L’explication est donnée par d’un des leaders de l’opposition, Ichiro Ozawa, qui a affirmé récemment, « nous avons plein de plutonium dans nos centrales nucléaires, il nous est possible de fabriquer de trois à quatre milles têtes nucléaires » [7]. En raison de son histoire, le Japon rejette officiellement les armes nucléaires suivant trois principes énoncés en 1959 par le Premier ministre, « pas de production, pas de possession et pas d’introduction ». Le dernier principe a déjà été violé par l’armée américaine qui a utilisé des îles japonaises comme base nucléaire [8]. Les autres probablement aussi. Le Japon possède toute la technologie nécessaire à la production de l’arme nucléaire et à son déploiement. En particulier, son programme de lanceur de satellites lui donne accès à des missiles inter-continentaux. Il s’est aussi engagé dans la course à l’arme de quatrième génération en développant un programme de « recherche fondamentale » consacré à la fusion par laser [9].

Pendant ce temps, le premier chargement de combustible MOX français, arrivé au Japon en septembre 1999, attend dans la piscine de la centrale de Fukushima en compagnie du combustible irradié. Tout un symbole. Les autres chargements ont rejoint, eux aussi, une piscine de déchets…


[1] Sur ce scandale, lire la revue de la presse japonaise faite par l’ACROnique du nucléaire n°59 de décembre 2002.

[2] Les documents sont disponibles sur son site Internet http://www.jca.apc.org/mihama

[3] Sur cet accident, on pourra lire, Criticality Accident at Tokai-mura – 1 mg of uranium that shattered Japan’s nuclear myth, de Jinzaburo Takagi et the Citizens’ Nuclear Information Center, (http://www.cnic.or.jp/english/books/jco-apply.html) ou en français, Tokaï-mura : un grave accident qui devait arriver, revue de la presse internationale de l’ACROnique du nucléaire n°47, décembre 1999.

[4] The Japan Times: Aug. 20, 2002

[5] Sur cette affaire, on pourra se reporter au site Internet en japonais de l’association Mihama qui en est à l’origine ou lire en français, La fin du retraitement en Grande-Bretagne ?, extrait de la revue de presse internationale de l’ACROnique du nucléaire n°49, juin 2000.

[6] Le communiqué de presse de la compagnie, daté du 26 décembre 2001, est disponible en anglais à l’adresse suivante :
http://www.cnic.or.jp/english/news/misc/melox.html

[7] Mainichi Shimbun, 7 avril 2002 et The Guardian, 8 avril 2002

[8] How much did Japan know ?, by Robert S. Norris, William M. Arkin, and William Burr, Bulletin of the Atomic Scientists, January/February 2000, Vol. 56, No. 1, http://www.thebulletin.org

[9] Sur ce sujet, lire, Vers une quatrième génération d’armes nucléaires ?, ACROnique du nucléaire n°46, septembre 1999 et Liaisons dangereuses en recherche et armement, ACROnique du nucléaire n°57, juin 2002

Ancien lien

Futurs arrêtés et décrets concernant l’usine Cogéma de La Hague

Lettre de l’ACRO adressée au gouvernement

Communiqué de presse du 28 novembre 2002


L’Association pour le Contrôle de la Radioactivité dans l’Ouest a adressé cette lettre à Monsieur Le Premier Ministre, Madame la Ministre de l’Ecologie et du Développement Durable, Madame la Ministre déléguée à l’Industrie, Monsieur le Ministre de l’Economie des Finances et de l’Industrie et à Monsieur le Ministre de la Santé de la Famille et des personnes handicapées.

Nous avons appris par voie de presse que vous vous apprêtiez à publier les décrets et arrêtés concernant l’usine Cogéma de La Hague. Si nous pensons qu’une réduction des autorisations de rejet dans l’environnement est nécessaire, nous nous inquiétons du fait que de nouveaux combustibles pourraient être retraités sans aucune justification.

Selon le principe de justification de la législation européenne (article 6 de la directive EURATOM 96/29), ” toute nouvelle catégorie ou tout nouveau type de pratique entraînant une exposition à des rayonnements ionisants […doivent être justifiés] par leurs avantages économiques, sociaux ou autres par rapport au détriment sanitaire qu’ils sont susceptibles de provoquer “.Lors des enquêtes publiques de l’an 2000, l’exploitant demandait l’autorisation de retraiter des combustibles venant de réacteurs de recherche (MTR) et des combustibles Mox, sans justifier ces nouvelles pratiques. Dans ses commentaires, l’ACRO avait montré que cette lacune vis à vis du droit était sûrement due au fait qu’elles n’étaient pas justifiables.
Nous avions aussi souligné la maigreur de l’étude de danger. Depuis, aucun élément nouveau n’a été présenté au public, nous continuons donc à réclamer un débat public sur le bien-fondé du retraitement de ces nouveaux combustibles.

Alors que votre gouvernement annonce un débat sur l’énergie au printemps prochain, une décision nous paraît prématurée et pourrait nous faire douter de la sincérité de la démarche. Si nous accueillons favorablement la démarche de limitation des rejets retenue dans les nouveaux arrêtés concernant les autorisations de rejet, nous vous demandons de ne pas inclure dans les décrets à venir les autorisations de retraitement de nouveaux types de combustibles.

Ancien lien