Fondements éthiques de la radioprotection – Ethical Foundations of Radiological Protection

English below

Le projet de rapport en anglais sur les fondements éthiques du système de radioprotection a été soumis à la consultation du public sur Internet. Ce document inclut les commentaires de l’ACRO.

La CIPR explique que le but de ce projet de rapport est de « décrire comment la Commission a utilisé les critères éthiques pour développer le système de radioprotection, avec comme objectif de présenter de façon cohérente comment l’éthique fait partie du système ». Cependant, ce n’est pas ce qui fait dans le projet de rapport.

La CIPR analyse plutôt comment les trois principes de la radioprotection – la justification, l’optimisation et la limitation – qui sont au cœur du système et qui s’appliquent aux différents modes d’exposition, sont reliés à quatre critères éthiques : la bienfaisance/non-malfaisance, la prudence, la justice et la dignité. Elle ne regarde jamais si ces valeurs éthiques sont pleinement prise en compte par les règles de radioprotection.

La CIPR remarque que « cet intérêt récent pour la dimension éthique de la radioprotection n’est pas sans relation avec les difficultés rencontrées durant des décennies par les professionnels de la radioprotection face aux questions et inquiétudes des citoyens. L’accent mis traditionnellement sur la science des radiations s’avère être insuffisant et il est maintenant reconnu que les dimensions éthiques et humaines des situations d’exposition sont importantes, et parfois décisives dans le processus de décision et dans la communication. » La CIPR cite comme exemples la gestion des conséquences de la catastrophe de Tchernobyl, la gestion des déchets nucléaires et l’augmentation des applications médicales. Dans tous ces cas, les recommandations de la CIPR ont été critiquées et contestées par les personnes exposées. Les valeurs éthiques sont donc vue comme un moyen de communication.

Nous rappelons ici les trois principes fondamentaux du système de radioprotection par soucis d’exhaustivité :

  • « Le principe de justification qui dit que chaque décision qui change la situation d’exposition doit faire plus de bien que de mal. Cela signifie qu’en introduisant une nouvelle source de radiation dans des situations d’exposition planifiées, ou en réduisant l’exposition dans des situations d’exposition existantes ou d’urgence, on doit obtenir un bénéfice suffisant qui compense tous les coûts ou les conséquences négatives. Les bénéfices sont réputés s’appliquer à la société dans son ensemble, à des individus et aussi aux biotes.
  • Le principe d’optimisation qui stipule que toutes les expositions doivent être maintenues aussi bas que raisonnablement possible en prenant en compte les facteurs économiques et sociétaux. C’est une procédure reliée à la source, visant à obtenir le meilleur niveau de protection dans les circonstances actuelles grâce à un processus continu et itératif. Ce principe est la clé de voute du système de radioprotection. De plus, afin d’éviter les conséquences inéquitables de la procédure d’optimisation, la Commission recommande de limiter les doses aux individus et aux biotes pour une source donnée.
  • Le principe de limitation, qui déclare que les expositions individuelles ne doivent pas dépasser les doses limites recommandées par la Commission et qui ne s’applique qu’aux expositions planifiées autres que les expositions médicales et aux expositions des biotes. »

Les deux premiers principes peuvent conduire à des situations conflictuelles. Le bénéfice de quelques personnes ou de la société dans son ensemble peut conduire à exposer d’autres personnes qui ne bénéficient pas de cette exposition. De même, les facteurs économiques et sociétaux sont suffisamment vagues pour conduire à des situations conflictuelles qui ne sont jamais abordées dans le projet de rapport. C’est le cas, par exemple, avec les mines d’uranium dans des pays qui n’ont pas d’énergie nucléaire. Les riverains ne bénéficient pas de la mine alors qu’ils sont exposés aux poussières radioactives. Leurs propres facteurs sociétaux et économiques ne pèsent pas lourds devant ceux des pays où sont implantés les centrales nucléaires.

En ce qui concerne les situations d’exposition existantes qui font suite à un accident nucléaire de grande ampleur, les facteurs économiques et sociétaux des habitants des territoires contaminés ne sont pas ceux des personnes vivant dans les autres parties du pays. Ainsi, par exemple, les premiers veulent vendre leurs produits agricoles et ces derniers veulent éviter une contamination interne.

Ces deux exemples soulèvent des questions éthiques difficiles qui ne sont jamais abordées dans le projet de rapport.

Regardons maintenant les quatre critères éthiques. La CIPR explique que « la bienfaisance signifie promouvoir ou faire le bien, et la non-malfaisance, éviter la causalité du préjudice […]. Dans un sens plus restreint, la bienfaisance inclut la considération des bénéfices directs pour les individus, les communautés et l’environnement. l’utilisation des rayonnements, bien qu’associée à certain risques, peut, sans aucun doute, avoir des conséquences désirables, comme l’amélioration des diagnostiques ou de la thérapie en médecine, ou encore la production d’électricité. Cela doit être mis dans la balance face aux conséquences préjudiciables. »

La CIPR reconnaît que l’évaluation de la bienfaisance et de la non-malfaisance est un défi mais n’a rien d’autre à proposer « qu’une telle évaluation [soit] transparente pour ce qui est pris en compte, qu’elle reconnaisse les désaccords éventuels et qu’elle aille plus loin qu’une simple comparaison des impacts directs sur la santé et des coûts économiques. » La CIPR ne fournit aucun exemple de bonne pratique découlant de ces recommandations qui sont rarement mises en œuvre.

« La prudence est la capacité à faire des choix éclairés et soigneusement considérés sans la connaissance complète de la portée et des conséquences de ces actions […]. Les implications de cette attitude prudente ont été importantes pour la structuration du système de protection radiologique. » Cependant, les limites d’exposition ont toujours été réduites aux cours des années et la CIPR ne se demande jamais si ces recommandations étaient suffisamment prudentes dans le passé.

La CIPR note que « ni la prudence ni le principe de précaution ne devraient être interprétés comme une demande de risque zéro, le choix de l’option la moins risquée ou l’exigence d’actions pour l’action ». Mais les populations ont le droit de choisir l’option la moins risquée et d’exiger des actions dans le souci d’une meilleure protection.

« La justice est généralement définie comme l’équité dans la distribution des avantages et des inconvénients entre les groupes de personnes (justice distributive), l’équité dans la compensation des pertes (justice réparatrice) et l’équité dans les règles et les procédures relatives aux processus décisionnels (justice procédurale) […]. Comme pour les contraintes de dose et les niveaux de référence, les limites de dose sont des outils pour restreindre l’exposition individuelle afin d’assurer l’équité dans la répartition des risques parmi le groupe d’individus exposés. »

Avant de considérer une distribution « équitable » des risques, on doit se demander si ces risques sont acceptables ou non.

De plus, certaines catégories de personnes sont plus sensibles aux radiations que d’autres. C’est le cas, en particulier, des enfants et bébés. La justice devrait impliquer une meilleure protection avec des limites plus faibles pour eux. C’est une forte demande des familles vivant dans les environs de la centrale de Fukushima daï-ichi. Certaines d’entre elles ont évacué sans le moindre soutien afin de protéger leurs enfants.

De la même manière, les individus ne sont pas tous égaux en terme de patrimoine génétique et une partie de la population présente des hypersensibilités face aux effets néfastes des radiations (1 à 3% sont hétérozygotes pour l’ataxie télangiectasie). Le système de radioprotection ne peut être construit pour protéger la majorité des citoyens, mais tous les citoyens.

Anand Grover, Rapporteur spécial du Conseil des droits de l’Homme, note, dans son rapport sur la situation à Fukushima que « les recommandations de la CIPR sont basées sur les principes d’optimisation et de justification, selon lesquels toutes les actions du gouvernement devraient tendre à maximiser les bénéfices sur les détriments. Une telle analyse risques-bénéfices n’est pas en accord avec le cadre du droit à la santé car il privilégie les intérêts collectifs par rapport aux droits individuels. En vertu du droit à la santé, le droit de chaque individu doit être protégé. »

La CIPR ne traite pas cette question de la santé individuelle dans son projet de rapport. Comment peut-elle espérer répondre aux exigences des populations et être comprise par elles ?

« La justice intergénérationnelle a été traitée par la Commission pour la gestion des déchets radioactifs […]. La Commission introduit des responsabilités vis à vis des générations futures en leur donnant les moyens d’assurer leur protection. » La justice pourrait aussi être étendue à des considérations spatiales en interdisant l’exportation des déchets radioactifs vers des pays étrangers qui ne bénéficient pas de la production d’électricité.

La mise en œuvre de la radioprotection nécessite un système démocratique pour éviter les abus. Cependant, la démocratie n’est pas retenue comme critère éthique par la CIPR.

Dans ce projet de rapport, l’application des principes éthiques est limitée à quelques sujets comme la gestion des déchets. Ces principes sont essentiellement utilisé pour justifier a posteriori les choix faits par la CIPR. L’ACRO pense que les valeurs éthiques doivent être entièrement appliquées à tous les aspects de la radioprotection et que la Commission devrait se demander si elle a atteint ce but. Les exemples présentés plus haut montrent que ce n’est probablement pas le cas.

Finalement, la CIPR considère les valeurs procédurales et introduit la responsabilité, la transparence et l’inclusion (participation des parties prenantes). « La responsabilité peut être définie comme le critère éthique procédural qui implique que les personnes en charge de la prise de décision soient redevables de leurs actions envers ceux qui susceptibles d’être affectés par ces actions. En terme de gouvernance, cela signifie l’obligation pour les individus ou les organisations de rendre compte de leurs actions, d’en accepter la responsabilité et d’être prêt à en assumer les conséquences si nécessaire. »

La transparence « concerne l’équité du processus à travers lequel l’information est intentionnellement partagée entre les individus et/ou les organisations […]. La transparence ne signifie pas simplement la communication ou la consultation. C’est relié à l’accès à l’information relative aux activités, délibérations et les décisions en jeu, et aussi à l’honnêteté avec laquelle cette information est transmise. Cela fait partie de la responsabilité sociale des entreprises, en veillant à ce que les décideurs agissent de manière responsable dans les domaines social, économique et environnemental, dans l’intérêt des individus et groupes concernés. »

Enfin, « la participation des parties-prenantes, aussi appelée implication ou engagement des parties prenantes, signifie « impliquer toutes les parties concernées dans les processus décisionnels liés à la protection radiologique ». »

L’ACRO soutient fortement l’application de ces valeurs procédurales et estime qu’elles devraient être mise en œuvre dès la phase de justification. Bien que cela ne soit pas mentionné dans le projet de rapport, c’est déjà une exigence de la convention d’Aarhus pour ce qui concerne l’environnement. Cela devrait être étendu à la radioprotection.

Le projet de rapport mentionne : « l’expérience de la gestion des conséquences de la catastrophe de Tchernobyl, et plus récemment l’accident de Fukushima, montrent que l’autonomisation des personnes affectées les aide à retrouver la confiance, à comprendre la situation à laquelle elles sont confrontées, et enfin, à prendre des décisions éclairées et à agir en conséquence. » Cela n’est vrai que pour un nombre très limité de personnes. La plupart des citoyens vivant dans les environs de la centrale de Fukushima daï-ichi ne font toujours pas confiance aux autorités. La « responsabilité » et la « transparence » ont été ignorées par les autorités japonaises. La limite arbitraire d’évacuation fixée à 20 mSv/an n’a jamais été expliquée ni justifiée. Les personnes qui refusent cette limite peuvent n’avoir pas d’autre choix que de rester à cause des contraintes économiques.

C’est dommage que la CIPR n’ait pas cherché à comprendre la situation des territoires contaminés dans son ensemble et ait limité ses fameux « dialogues » à un nombre limité de personnes qui sont d’accord avec elle. Elle aurait beaucoup plus appris sur les conséquences de ses recommandations en parlant à toutes les catégories de personnes.

En conclusion, l’ACRO estime que l’étude des fondements éthiques de la radioprotection est nécessaire mais qu’elle n’est pas complète dans ce projet de rapport. Cela devrait être soumis à différentes parties prenantes et discuté par d’autres moyens qu’une simple consultation sur Internet.


English version

The draft ICRP report Ethical Foundations of the System of Radiological Protection has been submitted for public consultation on the Internet. The present document includes comments from ACRO.

ICRP claims that the purpose of the draft report is to “describe how the Commission has used ethical values in developing the system of radiological protection with the objective of presenting a coherent view of how ethics is part of this system”. Actually, this is not what is really done in the draft report.

ICRP rather consider how the three fundamental principles of protection – justification, optimisation, and limitation – that are central to the system and apply to the different types of exposure situations are related to four core ethical values: beneficence/non-maleficence, prudence, justice and dignity. It never considers whether these ethical values are fully taken into account in radiation protection rules.

ICRP notes that “this relatively recent interest in ethical aspects of radiological protection is certainly not unrelated to the difficulties encountered for decades by radiological protection professionals facing the questions and concerns of citizens. The traditional emphasis on the science of radiation has been shown to be insufficient, and it is now recognised that human and ethical dimensions of exposure situations are important and sometimes decisive in both the decision making process and in communication”. As examples, ICRP cites the management of the consequences from the Chernobyl accident, radioactive waste management and the increasing use of medical applications, all situations where its recommendations have been challenged and criticized by exposed persons. Ethical values are then seen as a tool to communicate with the public.

For the sake of completeness, let us recall the three fundamental principles of the present radiological protection system:

  • “The principle of justification, which states that any decision that alters the exposure situation should do more good than harm. This means that, by introducing a new radiation source in planned exposure situations, or by reducing exposures in existing and emergency exposure situations, one should achieve sufficient benefit to offset any costs or negative consequences. The benefits are deemed to apply to society as a whole, to specific individuals and also to biota.
  • The principle of optimisation, which stipulates that all exposures should be kept as low as reasonably achievable taking into account economic and societal factors. It is a source-related process, aimed at achieving the best level of protection under the prevailing circumstances through an ongoing, iterative process. This principle is the cornerstone of the system of protection. Furthermore, in order to avoid inequitable outcomes of the optimisation procedure the Commission recommends restricting doses to individuals and biota from a particular source.
  • The principle of limitation, which declares that individual exposures should not exceed the dose limits recommended by the Commission, and applies only to planned exposure situations other than medical exposure to patients or exposure of biota.”

The first two principles can lead to conflicting situations. The benefit of some people or the society as a whole could lead to the exposure of other people who do not benefit from this exposure. Similarly, the economic and societal factors are vague enough to lead to conflicting situations that are never addressed in the present draft report. This is the case for example with uranium mining in countries that do have nuclear power plants. Neighbouring communities generally do not benefit from the mine although they are exposed to the radioactive dust. Their societal and economical factors do not weight much in front of the societal and economical factors of the countries where the nuclear power plants are implanted.

Regarding existing exposure situations after a large-scale nuclear accident, the economic and societal factors of the population living in contaminated territories are not the same as the ones of the other parts of the country. For example, the former want to sell their agricultural production and the later to avoid internal contamination.

These two examples raise difficult ethical issues related to radiological protection that are never addressed in the draft ICRP report.

Let us consider now the four core ethical values. ICRP explains that “beneficence means promoting or doing good, and non-maleficence means avoiding causation of harm […] In a narrower sense, beneficence includes consideration of direct benefits, for individuals, communities, and the environment. The use of radiation, although coupled with certain risks, undoubtedly can have desirable consequences, such as the improvement of diagnostics or therapy in medicine, or the production of electricity. These have to be weighed against the harmful consequences.”

ICRP recognize that the assessment of beneficence and non-maleficence is a key challenge but has nothing else to propose than recommending, “that such an assessment [should] be transparent about what was included, recognise disagreements where they arise, and go beyond a simple balancing of direct health impacts against economic costs.” ICRP provides no example of good practice arising from these recommendations that are rarely implemented.

“Prudence is the ability to make informed and carefully considered choices without the full knowledge of the scope and consequences of actions […] The implications of this prudent attitude have been significant for the subsequent structuring of the system of radiological protection.” However, exposure limits have always been reduced over the years and the ICRP never asks itself whether its recommendations where prudent enough in the past.

ICRP notes that “neither prudence nor the precautionary principle should be interpreted as demanding zero risk, choosing the least risky option, or requiring action just for the sake of action.” But populations do have the right to choose the least risky option and requiring actions for the sake of a better protection.

“Justice is usually defined as fairness in the distribution of advantages and disadvantages among groups of people (distributive justice), fairness in compensation for losses (restorative justice), and fairness in the rules and procedures in the processes of decision-making (procedural justice). […] As with dose constraints and reference levels, dose limits are tools to restrict individual exposure in order to ensure fairness in the distribution of risks across the exposed group of individuals.”

Before considering a “fair” distribution of the risks one should wonder whether such risks are acceptable or not.

Moreover some categories of people are more sensitive to radiations than others. It is particularly the case of children and infants. Justice would mean a better protection with lower limits for them. This is a strong request from families living around the Fukushima dai-ichi nuclear power plant. Some of them evacuated without any support in order to protect their children.

Similarly, individuals are not all equal in terms of genetic heritage and part of the population has a hypersensitivity to the adverse effects of radiation (1 to 3% are heterozygous for ataxia telangiectasia). The radiation protection system cannot be built to protect the majority of citizens, but all citizens.

Anand Grover, Special Rapporteur of the Human Rights Council, in his report about the situation in Fukushima notes that “ICRP recommendations are based on the principle of optimisation and justification, according to which all actions of the Government should be based on maximizing good over harm. Such a risk-benefit analysis is not in consonance with the right to health framework, as it gives precedence to collective interests over individual rights. Under the right to health, the right of every individual has to be protected.”

ICRP does not address this issue of individual health in its draft report. How can it expect to answer to the demands of the populations and be understood by them?

“Intergenerational justice has been addressed by the Commission for the management of radioactive waste […]. The Commission introduces responsibilities towards future generations in terms of providing the means to deal with their protection”. Justice could also be extended spatial consideration by forbidding the export of radioactive waste to foreign countries that did not benefit from the electricity production.

Implementation of radiological protection requires democracy to avoid abuses. Nevertheless, democracy is not considered as a core ethical value by ICRP.

In this draft report, application of ethical principles is limited to few topics such as waste management. These principles are mainly used to justify a posteriori the choices done by the ICRP. ACRO considers that ethical values should be fully applied to all aspects of radiological protection and the Commission should ask itself whether it has achieved this full implementation. Examples presented before show that this is probably not the case.

The ICRP finally consider procedural values and introduce accountability, transparency and inclusiveness (stakeholder participation). “Accountability can be defined as the procedural ethical value that people who are in charge of decision-making must answer for their actions to all those who are likely to be affected by these actions. In terms of governance this means the obligation of individuals or organisations to report on their activities, to accept responsibility, and to be ready to account for the consequences if necessary.”

Transparency “concerns the fairness of the process through which information is intentionally shared between individuals and/or organisations […] Transparency does not simply mean communication or consultation. It relates to the accessibility of information about the activities, deliberations, and decisions at stake and also the honesty with which this information is transmitted. It is part of corporate social responsibility, ensuring that decision-makers act responsibly in the social, economic and environmental domains in the interest of individuals and groups concerned.”

Finally, “stakeholder participation, also referred to as stakeholder involvement or engagement, means “involving all relevant parties in the decision-making processes related to radiological protection””.

ACRO strongly supports the implementation of these three procedural values and considers that they should be implemented from the justification stage. This is not mentioned in the draft report, although it is a requirement the Aarhus convention for environmental issues. This should be extended to radiological protection.

The draft report mentions: “experience from the management of the consequences of the Chernobyl accident, and more recently the Fukushima accident demonstrated that empowerment of affected people helps them to regain confidence, to understand the situation they are confronted with, and finally to make informed decisions and act accordingly.” This is true for a very limited number of people. Most of citizen living around the Fukushima dai-ichi nuclear power plant still do not trust authorities. “Accountability” and “transparency” have being ignored by Japanese authorities. The arbitrary evacuation limit of 20 mSv/y has never been explained nor justified. People refusing this limit might have no other choice than remaining in contaminated territories due to economical constrains.

It is a pity that the ICRP has never tried to grasp the situation in contaminated territories as whole and has limited its so-called “dialogues” to a limited number of people that agrees with the Commission. It would have learned much more about the consequences of its recommendations in talking to all categories of people.

As conclusion, ACRO considers that studying the ethical basis of the radiological protection is a necessity but it is not achieved in the present draft report. It should be submitted to various stakeholders and discussed by other means than a simple public consultation on the Internet.

AVIS de l’ACRO en réponse à la consultation sur les projets de décret et d’arrêté relatifs au plan national de gestion des matières et déchets radioactifs

Le Plan National de Gestion des Matières et Déchets Radioactifs (PNGMDR), officialisé par la loi de 2006, a pour but de trouver une solution de gestion pour chaque catégorie de déchets radioactifs existants et à venir. Il inclut aussi les matières radioactives qui pourraient devenir des déchets.

Ce Plan est placé sous la responsabilité de l’Autorité de sûreté nucléaire et du Ministère en charge de l’environnement qui organisent régulièrement des auditions des producteurs de déchets et d’experts. Ces auditions sont ouvertes et l’ACRO y participe.

Le rapport 2016-2018 va être publié prochainement. Il a fait l’objet, pour la première fois, d’une évaluation environnementale qui a été soumise à l’évaluation de l’Autorité environnementale. Suite à ces travaux, un décret et un arrêté vont être prochainement publiés. Ils sont soumis à une procédure de consultation sur le site Internet du Ministère de l’Environnement, de l’Energie et de la Mer.

Vous pouvez encore y participer.

Fukushima cinq ans après, retour à l’anormale

Etude pour Greenpeace Belgique

Rapport complet

Résumé

La catastrophe nucléaire à la centrale de Fukushima daï-ichi (FDI), classée au niveau 7 de l’échelle internationale INES – le niveau le plus élevé – est largement reconnue comme étant d’origine humaine. Elle a contaminé un grand territoire au Japon et est responsable du déplacement de 160 000 personnes environ, selon les statistiques officielles. Les territoires contaminés qui n’ont pas été évacués sont aussi fortement affectés.

Les rejets radioactifs de la centrale accidentée perdurent, parfois à des niveaux anormalement élevés. Cela a été caché pendant plusieurs mois, générant ainsi une forte confusion. De mauvaises pratiques ont ainsi conduit à des rejets importants de poussières radioactives et à une contamination significative à des dizaines de kilomètres de la centrale. TEPCo peine à réduire les fuites en mer et l’eau contaminée continue à s’accumuler dans des cuves sans solution en vue.

La compagnie en est toujours à tenter de stabiliser la centrale et de réduire les menaces. Le démantèlement à proprement parler n’a pas encore commencé. Alors que les territoires qui entourent la centrale ont été évacués, il y a une crainte de reprise des rejets massifs en cas de nouvelle catastrophe naturelle. Les personnes déplacées se demandent s’il est raisonnable de rentrer une fois l’ordre d’évacuation levé. En effet, les réacteurs accidentés de la centrale de FDI sont plus fragiles que des réacteurs normaux et leur enceinte de confinement fuit. Ils pourraient ne pas tenir en cas de séisme et tsunami, entraînant ainsi de nouveaux rejets radioactifs massifs.

Les évacués

De nombreuses personnes ont dû évacuer pendant la phase d’urgence, suivies par d’autres durant les premiers mois à cause de la contamination radioactive. De nombreuses autres personnes sont parties d’elles-mêmes pour se protéger ou protéger les enfants. Cinq ans plus tard, la plupart restent évacuées et ont du mal à imaginer leur avenir.

Le nombre total de personnes déplacées n’est pas bien connu. Cependant, selon les données officielles, environ 160 000 personnes ont fui les territoires contaminés. Cinq ans plus tard, le nombre de personnes déplacées est toujours de 100 000 environ alors que l’ordre d’évacuer n’a été levé que dans trois communes. Celles qui se sont réinstallées ailleurs ne sont plus comptées bien qu’elles souffrent encore.

Au-delà de ces chiffres, il y a de nombreux individus dont la vie a été fortement perturbée. Les catastrophes nucléaires majeures sont d’abord des catastrophes humaines qui conduisent au déplacement de nombreuses personnes qui perdent tout : le logement, la vie de famille, le lien social, jusqu’à leur avenir. L’évacuation génère de grandes difficultés et de la souffrance pour les populations affectées, mais elle était nécessaire. Les personnes qui n’ont pas été évacuées et qui vivent toujours en territoire contaminé s’inquiètent aussi beaucoup pour leur santé ; leur vie quotidienne est aussi fortement perturbée.

Pour définir le devenir des territoires évacués, les autorités japonaises les ont divisé en trois zones en fonction du débit de dose ambiant : les zones où l’exposition externe annuelle devrait dépasser vingt millisieverts (20 mSv) pendant cinq ans et là où elle dépasse 50 mSv actuellement sont classées en « zones de retour difficile ». L’ordre d’évacuation ne sera pas levé avant plusieurs années et la réinstallation des résidents est aidée. Les zones où l’exposition externe sera sûrement inférieure à 20 mSv par an sont classées en zones où l’ordre d’évacuer est prêt à être levé. Entre les deux, là où l’exposition externe est comprise entre 20 et 50 mSv par an, les résidents ne peuvent pas rentrer, mais la décontamination devrait pouvoir la faire passer sous la limite de 20 mSv par an.

La protection contre les radiations

Aussi bien la politique d’évacuation que celle de retour des populations est basée sur une interprétation laxiste des recommandations internationales de radioprotection qui ne sont pas très contraignantes. 20 mSv par an correspond à la valeur la plus haute des niveaux de référence introduits par la Commission internationale de protection radiologique (CIPR) pour ce qu’elle appelle les « situations existantes » qui incluent le post-accident. La CIPR recommande de baisser ce niveau à 1 mSv par an. Les autorités japonaises ont donc adopté cette valeur comme un objectif à long terme, sans calendrier d’application. Pour le moment, elles maintiennent un niveau de référence de 20 mSv par an qui est trop élevé pour nombre de Japonais.

En ce qui concerne la contamination de l’alimentation, la stratégie est complètement différente : les niveaux de contamination maximaux admissibles ont été fixés en dessous des recommandations internationales pour retrouver la confiance des consommateurs et soutenir l’agriculture dans les territoires contaminés.

Le contraste entre la protection contre l’exposition externe liée au rayonnement ambiant et l’exposition interne liée à l’alimentation est saisissant. Dans le premier cas, les autorités refusent de baisser les niveaux de référence qui sont au plus haut des recommandations internationales et dans l’autre, les niveaux maximum admissibles sont divisés par un facteur 5 après un an.

Une telle différence montre que le souci premier des autorités concerne les conséquences économiques de la catastrophe nucléaire. La diminution des niveaux dans l’alimentation avait pour but de rassurer les consommateurs qui évitent les produits de Fukushima. Inversement, l’indemnisation des personnes évacuées représente un lourd fardeau économique et les autorités n’envisagent rien d’autre que le retour des populations déplacées.

Afin d’obtenir l’assentiment des citoyens, les autorités répètent à l’envi que des cancers radio-induits n’apparaissent pas, ou s’ils apparaissent ils sont indétectables, en dessous d’une dose cumulée de 100 mSv, bien que les recommandations internationales soient basées sur l’hypothèse que le nombre de cancers et les effets héréditaires sont proportionnels à la dose reçue, sans seuil. Avec une limite à 20 mSv par an, 100 mSv cumulés peuvent être rapidement atteints.

Ainsi, les autorités japonaises ont changé leur politique et ont introduit une nouvelle façon de mesurer la dose. Les zones d’évacuation ont été définies à partir du débit de dose ambiant qui peut être mesuré simplement à l’aide de différents appareils, dont de simples radiamètres. Puis, pour estimer la dose annuelle, il est supposé que chaque individu passe en moyenne 8 heures par jour à l’extérieur et qu’à l’intérieur, l’exposition est réduite de 60%. Mais, pour le retour des populations, les autorités vont fournir des dosimètres individuels, appelés glass-badges au Japon, pour enregistrer les doses reçues par chacun, sans mentionner que ce type d’appareil donne une valeur globale 30 à 40% inférieure à l’autre méthode de mesure avec des radiamètres.

Cette nouvelle politique repose aussi sur un changement de paradigme : chacun devient responsable de sa propre protection contre les rayonnements ionisants. A l’inverse des travailleurs du nucléaire qui doivent être contrôlés, personne ne va vérifier que la population utilise bien ce dosimètre individuel. C’est particulièrement problématique pour les enfants qui sont plus sensibles aux radiations. Contrôler sa vie au quotidien, apprendre à minimiser la dose reçue, constituent des fardeaux qui ne sont pas acceptés, surtout quand il y a des enfants car ce n’est pas un avenir à leur proposer.

Trente ans après la catastrophe de Tchernobyl, les règles de radioprotection définies au niveau international ne sont pas adaptées aux personnes qui vivent dans les territoires contaminés. Elles sont particulièrement confuses pour les populations et difficiles à mettre en œuvre. Cela permet aux autorités de les adapter à leur propre avantage plutôt qu’à celui des population concernées. Les règles devraient être plus contraignantes en terme de limites, d’évolution temporelle et de mise en œuvre opérationnelle.

Contamination de l’alimentation

En ce qui concerne la contamination de l’alimentation, les autorités japonaises ont d’abord sous-estimé l’ampleur des problèmes et ont été fréquemment prises par surprise dans les premiers mois. Par conséquent, la confiance envers les autorités et le gouvernement s’est érodée et les populations préoccupées par la sécurité alimentaire ont reconsidéré leur relation à l’Etat et à l’alimentation.

Mais les citoyens japonais, les producteurs, les vendeurs et les consommateurs ont mesuré la radioactivité dans les aliments, forçant ainsi les autorités à introduire des contrôles systématiques. La situation s’est donc rapidement améliorée et, à l’exception des plantes sauvages, du gibier, des poissons et des potagers, la contamination de l’alimentation vendue sur les marchés reste faible. La contamination interne des enfants contrôlés par anthropogammamétrie est suffisamment faible pour considérer que l’exposition externe est le problème principal dans les territoires contaminés. Ce succès a un coût : de nombreux agriculteurs ne peuvent pas reprendre leurs activités et certaines productions traditionnelles pourraient disparaître.

Le cas japonais montre l’intérêt d’un processus ouvert dans lequel chacun peut contrôler la contamination et adapter son régime alimentaire à ses propres critères. Cependant, les consommateurs rechignent toujours à acheter des aliments en provenance des territoires contaminés. Les producteurs et les agriculteurs, éleveurs, pêcheurs, forestiers… en particulier souffrent encore cinq ans plus tard.

La politique gouvernementale s’est focalisée sur la sécurité alimentaire (anzen en japonais), sans se préoccuper de la dimension culturelle et du climat de confiance vis à vis des aliments (anshin, en japonais). Imposer des standards ne suffit pas à surmonter la défiance des consommateurs et le défi est de garantir la sécurité alimentaire et la tranquillité qui va avec.

Quel avenir pour les territoires évacués ?

Le gouvernement japonais a décidé de lever tous les ordres d’évacuation avant mars 2017 et d’arrêter les indemnisations avant mars 2018, sauf dans les zones dites de retour difficile. Même J-Village, un ancien centre d’entraînement de football transformé en base pour les travailleurs à la centrale de FDI, va être rendu aux sports avant les jeux olympiques de 2020.

Les autorités japonaises rêvent d’une catastrophe réversible et les recommandations internationales sur la gestion post-accidentelle se préoccupent surtout de retour à la normale. Avec une demi-vie de 30 ans, le césium-137 décroît trop lentement. Le gouvernement japonais a donc lancé un vaste chantier de décontamination aussi bien dans les territoires évacués que dans ceux qui n’ont pas été évacués, partout où l’exposition externe pourrait dépasser 1 mSv par an, à l’exception, une fois encore, des zones de retour difficile. Cela consiste à gratter la terre, couper les herbes, émonder les arbres et les buissons et laver les toits des habitations, les routes, trottoirs… dans les environs immédiats des zones de vie, transformant ainsi les villes et villages en oasis au milieu d’un vaste territoire contaminé. Pour les zones évacuées, les plans prévoient la décontamination de 24 800 ha et rien n’est prévu au-delà, dans les forêts et montagnes qui couvrent 70% de la province de Fukushima.

La décontamination n’est pas très efficace et engendre une grande quantité de déchets radioactifs pour lesquels les solutions envisagées sont des échecs à cause de l’opposition des populations. De fait, la gestion des déchets radioactifs est très complexe dans tous les pays qui en ont accumulé une quantité significative. Mais après un accident grave, c’est encore plus complexe et les volumes sont gigantesques. Dans la seule province de Fukushima, environ 20 millions de mètres cubes sont attendus et le centre d’entreposage prévu va couvrir une superficie de 16 km2. Pour le moment, les projets de stockage sont bloqués à Fukushima et dans les autres provinces, mais les autorités s’accrochent à leur approche autoritaire qui est un échec : Décider, Annoncer et Défendre (DAD). Pendant ce temps là, les déchets s’accumulent dans des sacs qui se détériorent rapidement.

La décontamination s’est révélée être très décevante alors que le niveau de dose ambiant n’a pas baissé de façon significative par rapport à ce que l’on a pu observer dans les forêts où aucun travaux n’ont eu lieu. Mais les autorités continuent à favoriser le retour des populations.

Les résidents sont réticents à rentrer

Jusqu’à présent, les ordres d’évacuation ont été levés dans des parties de Tamura et de Kawauchi en 2014, et à Naraha en 2015. Tous ces territoires sont dans les parties les moins contaminées de la zone d’évacuation de 20 km. Les recommandations à l’évacuation autour de nombreux points chauds répartis çà et là ont toutes été levées. Mais les habitants rechignent à rentrer et les territoires contaminés font face aux problèmes de dépopulation et de vieillissement.

La commune de Hirono, par exemple, qui est entre 20 et 30 km de la centrale de FDI a été incluse dans la zone dite de préparation à l’évacuation d’urgence en 2011. Les habitants peuvent rentrer, mais selon le dernier recensement de 2015, une grande partie des résidents est engagée dans les travaux à la centrale accidentée : la population masculine a augmenté de 2,3% depuis 2010 et la population féminine, au contraire, a baissé de 42,3%. A Minami-Soma, la population a baissé de 66% depuis l’accident et l’âge moyen des habitants a augmenté de 14 années, un niveau attendu pour 2025.

Un retour à la normale est impossible après un accident nucléaire de grande ampleur comme ceux de Tchernobyl et de Fukushima. Les principes directeurs des Nations Unies relatifs aux personnes déplacées à l’intérieur de leur pays enjoignent les autorités à associer pleinement ces personnes à la planification et à la gestion de leur retour et de leur réinstallation. Mais au Japon, cette participation est réduite à des « réunions d’explication » (seitsumeikai) à huis clos, sans la présence de médias, d’associations, ou d’experts, laissant ainsi les populations désarmées.

Les communautés ne voient pas la fin des difficultés auxquelles elles font face et en souffrent. Rester ou partir, rentrer ou se réinstaller sont autant de choix difficiles sans solution satisfaisante. Le nombre de personnes souffrant de troubles psychologiques, comme le stress post-traumatique ou la dépression, est plus élevé que la normale, aussi bien chez les personnes évacuées que chez les personnes non-évacuées. Le nombre de suicides liés à la triple catastrophe est plus élevé à Fukushima que dans les provinces de Miyagi et d’Iwate, sévèrement touchées par le tsunami.

Conclusions

Les conséquences de l’accident nucléaire sont toujours présentes et des réponses acceptables pour les populations sont indispensables. Les personnes affectées sont toujours en train de se battre pour s’en remettre. Elles continuent à faire face à de fortes inquiétudes relatives à leur santé, à la séparation de leur famille, aux ruptures dans leur vie et à la contamination de l’environnement sur de vastes territoires. Et comme une catastrophe nucléaire dure pendant des décennies, les populations ne voient pas la fin des difficultés auxquelles elles font face.

Après un tel accident, de nombreuses personnes ne croient plus en la parole des autorités et des experts qui n’ont pas réussi à les protéger. Mais les chemins vers la résilience requièrent une bonne coordination entre les autorités et les populations. Les solutions envisagées et expérimentées ne peuvent pas ignorer les besoins et demandes spécifiques des personnes concernées, ainsi que leurs suggestions. Cela implique de trouver aussi de nouvelle méthode de délibération et de prise de décision. Les solutions peuvent différer d’une famille à l’autre ou d’une communauté à l’autre. Comme il n’y a pas de bonne solution, chaque décision doit être évaluée et adaptée. En plus de la souffrance engendrée, un accident nucléaire remet en cause les fondements de la démocratie.

Les citoyens japonais ont fait montre d’initiative à propos de la mesure de la radioactivité. Une cartographie de la pollution radioactive a été effectuée partout et la surveillance des aliments a poussé les autorités, producteurs et vendeurs à renforcer leurs propres contrôles pour finalement conduire à une baisse significative de l’ingestion de radioéléments. Pourquoi un tel processus ouvert qui a fait ses preuves ne peut pas être mis en place pour décider de l’avenir des territoires contaminés et de leurs populations ?

Etude des niveaux de radioactivité dans les environs du centre de stockage CSFMA de l’Aube (2012-2013)

Réalisée à la demande de la CLI de Soulaines, cette étude poursuit le travail engagé en 2007 qui avait pour but de dresser un premier bilan environnemental après quinze années d’exploitation du centre de stockage des déchets radioactifs de l’Aube (CSA). Cinq ans plus tard, l’objectif est ici de suivre l’évolution des niveaux de radioactivité rencontrés et de permettre, à partir de nouvelles investigations, d’en élargir la connaissance.

A cette fin, le travail s’est articulé en 4 volets complémentaires visant à connaitre la situation radiologique actuelle et d’en évaluer les évolutions :

  • Volet 1 : Mesures dans l’environnement aquatique et terrestre du CSA et dans ses environs,
  • Volet 2 : Evaluation des niveaux d’irradiations autour du périmètre de l’installation nucléaire,
  • Volet 3 : Implantation de végétaux aquatiques afin d’évaluer la qualité radiologique des eaux de surface,
  • Volet 4 : Bio-surveillance réalisée par les abeilles au travers de l’analyse des produits de la ruche.

Accès au rapport de cette étude :

Rapport de l’étude 2012-2013 (volets 1,2 et 3)

Volet 4 (2012-2017) :

Rapport du volet 4 Biosurveillance par les abeilles (2017)

 

Cahiers d’acteur de l’ACRO dans le cadre du débat public CIGEO

Dans le cadre du débat public CIGEO (stockage profond de déchets radioactifs à Bure), l’ACRO vient de publier 2 cahiers d’acteurs (pour consulter l’ensemble des cahiers d’acteurs sur le site officiel, cliquez ici) :

Cahier d’acteur de l’ACRO N°79

Cahier d’acteur de l’ACRO N°81

Etude des niveaux de tritium dans les eaux souterraines du Centre de Stockage de la Manche

ACROnique du nucléaire n°102

Résumé non technique

Le suivi de la qualité radiologique des eaux souterraines au droit du Centre de Stockage de la Manche (CSM) constitue un élément essentiel de la surveillance du site. A cette fin, les eaux prélevées à l’intérieur d’un puits de contrôle (piézomètre) se doivent d’être représentatives de l’aquifère concerné au moment du prélèvement.

Dans le cadre de la surveillance réglementaire du site, les prélèvements sont réalisés par l’ANDRA pour chaque piézomètre à une même profondeur, sans purge préalable de la colonne d’eau. Il existe donc une incertitude sur les données fournies par l’exploitant liée à la méthode de prélèvement retenue.

C’est pourquoi, la CLI du CSM a souhaité lancer une étude afin de déterminer si la contamination en tritium est homogène en fonction de la profondeur ou stratifiée et, par extension, de tester la méthode de prélèvement retenue par l’exploitant.

Cette étude a porté sur une sélection de 8 piézomètres dans lesquels un échantillonnage a été réalisé sur quatre profondeurs définies, dont celle sondée habituellement par l’exploitant.

Afin d’étudier l’influence éventuelle de la hauteur de nappe, dont les variations décrivent un cycle annuel, les prélèvements ont été renouvelés chaque trimestre pendant une année.

L’étude réalisée sur l’année 2012 montre que :

Sept piézomètres étudiés sur huit présentent une stratification notable des niveaux de tritium sur l’ensemble de sa colonne d’eau. Les différences observées peuvent atteindre un facteur 87 entre deux profondeurs successives et un facteur 250 le long d’une même colonne d’eau. Cette stratification varie au cours de la l’année.

Cette constatation montre qu’un prélèvement à une profondeur donnée, comme le fait l’exploitant, ne peut être représentatif de l’aquifère étudié et n’apporte donc qu’une information partielle de la situation radiologique présente.

Toutefois si l’existence avérée d’une non homogénéité des niveaux de tritium le long d’une même colonne d’eau a pu être mis en évidence ici, un tel phénomène reste difficile à interpréter. Une poursuite du travail sur une période plus longue complétée par des investigations complémentaires sur un nombre plus important de strates pourrait permettre d’affiner ces premières conclusions.

Pour voir l’intégralité de l’étude ACRO, réalisée à la demande de la Commission Locale d’Information du Centre de Stockage de la Manche, cliquez ici
Pour voir la présentation faite devant la Commission Locale d’Information du Centre de Stockage de la Manche, cliquez ici
Ancien lien

De l’énergie à gogo !

Editorial de l’ACROnique du nucléaire n°91


Combien de mails par jour recevons nous, nous proposant d’aider au transfert de fonds acquis plus ou moins illégalement moyennant un pourcentage mirobolant ? Pour les gogos plus scrupuleux, il y a la version de la « loterie Bill Gates » ou du mourant sans héritier qui veut faire un don colossal à une œuvre humanitaire. Cela doit marcher de temps en temps puisque les propositions perdurent.

Ayant pignon sur rue, les banques sont apparues plus crédibles : aux Etats-Unis, elles ont fait croire aux classes sociales les plus défavorisées qu’elles pouvaient s’offrir à crédit la maison de leurs rêves, moyennant un taux d’usure énorme. Prises à leur propre piège, elles ont elles-mêmes cru pouvoir s’enrichir sans limites, avec les conséquences que l’on connaît. Les élites financières, alléchées par un taux d’intérêt de 17% par an, se sont aussi fait prendre par Bernard Madoff et un trivial système de vente pyramidal.

En promettant une énergie illimitée grâce à ITER ou 5 000 ans d’électricité et un recyclage quasi-complet grâce aux réacteurs de génération IV, l’industrie nucléaire utilise les mêmes grosses ficelles pour tenter de séduire et obtenir des fonds publics. Et ça marche ! Le CEA vient de signer un contrat de 652 millions d’euros dans le cadre du Grand Emprunt pour étudier la faisabilité d’un prototype de réacteur de nouvelle génération et proposer un avant-projet détaillé en 2017. Pour ITER, la crise économique aidant, l’Union européenne a du mal à suivre l’explosion des coûts du projet. Cet été, elle envisageait sérieusement de couper dans les autres budgets de recherche pour ce projet unique.

Les hommes politiques, élus sur la promesse d’un monde meilleur, n’ont pas trop le choix. Ils ont tout intérêt à croire et à faire croire à l’avènement d’une énergie illimitée. Paul Valéry[1] remarquait dès 1931 que « le temps du monde fini commence ». Et d’ajouter que « nous devons désormais rapporter tous les phénomènes politiques à cette condition universelle récente ». En vain. Presque un siècle plus tard, le monde a rétréci et continue de rétrécir : selon le WWF, l’Empreinte Ecologique de la Terre a dépassé sa biocapacité de 50%. Sans surprise, ce sont les pays de l’OCDE qui sont les principaux responsables. Et comme l’épuisement des ressources naturelles ne suffit pas à nos sociétés, elles augmentent aussi tous les ans leur dette financière.

Certes, s’endetter pour un investissement qui profitera aux générations futures, est nécessaire. Mais les projets doivent être évalués et leur pertinence parfaitement justifiée. Alors que les projets de recherche du Grand Emprunt vont faire l’objet d’une évaluation et d’une compétition, le nucléaire a été servi à part. Comment les arbitrages ont-ils été faits ? Comment les projets ont-ils été évalués ? Par qui ? Nous n’en savons rien.

EdF l’a bien compris : elle consacre une partie de son budget de recherche à faire des calculs prospectifs sur l’enfouissement des déchets nucléaires, pour s’assurer que le futur centre de stockage prévu par l’ANDRA à Bures, qu’elle doit financer à 80%, « ne soit pas une Rolls-Royce ». Et elle a déjà contesté le coût du projet. Inversement, EdF et Areva se plaignent d’une Autorité de Sûreté Nucléaire qui serait trop exigeante, et par là même responsable des surcoûts de l’EPR. Argument fallacieux, puisque les autres autorités européennes n’ont pas été plus tendres.

Alors, l’avis du public… Le mépris était flagrant lors du débat EPR. Il a juste le droit de consommer en se taisant.


[1] Regards sur le monde actuel et autres essais

Ancien lien

Le mythe du recyclage des combustibles nucléaires

Paru dans l’ACROnique du nucléaire n° 91 de décembre 2010


Areva est très fière de son activité à l’usine de La Hague : « grâce à notre plateforme industrielle, 96% des matières contenues dans les combustibles usés peuvent être valorisées sous forme de nouveaux combustibles, MOX (mélange d’oxydes d’uranium et de plutonium), ou URE (uranium de recyclage enrichi). » Et d’ajouter que le recyclage permet « une économie d’uranium naturel de l’ordre de 20 à 25% ». Voir par exemple le rapport 2009 d’Areva sur le traitement des combustibles usés provenant de l’étranger disponible en ligne. Au HCTISN, Areva a annoncé 17% d’économie d’uranium. Il y a donc des chiffres pour les experts et des chiffres pour les gogos, pardon, le public…

Comment se fait-il que si l’on recycle 96% de la matière, on ne fait une économie que de 25% maximum ? Plongeons nous donc dans ce que l’industrie nucléaire appelle le « cycle du combustible » pour comprendre.

Le détail des flux de matières à chaque étape du « cycle nucléaire » n’était pas connu, malgré les demandes répétées des associations. Grâce à la diffusion sur Arte d’un film sur l’envoi en Russie d’une partie de l’uranium de retraitement, le sujet a fait polémique et  le HCTISN[1] a été saisi. Il a rendu son rapport le 12 juillet 2010. L’ACRO, qui siège au Comité et a participé au Groupe de Travail, n’a pas signé le rapport. Il a été difficile d’arracher des données exhaustives aux exploitants et les chiffres obtenus ne sont pas toujours cohérents entre eux. Les données nouvelles contenues dans ce rapport vont cependant nous permettre, de façon approximative, d’estimer le taux de recyclage de l’industrie nucléaire. Sauf mention contraire, tous les chiffres qui suivent sont tirés de ce rapport disponible sur le site Internet du Comité. Le point de vue de Wise Paris, des associations de protection de l’environnement qui ont participé à ce groupe de travail, est sur notre site Internet.

La chaîne de l’uranium, de la mine à l’entreposage

L’atome d’uranium a essentiellement deux isotopes dans la nature, l’uranium 235 et l’uranium 238. Ils ont les mêmes propriétés chimiques, mais ont une masse légèrement différente. En revanche, le noyau de l’atome a des propriétés différentes : l’uranium 235 fissionne facilement quand il est bombardé par un neutron, mais pas l’uranium 238.

Dans la nature, la proportion entre ces deux isotopes est de 0,7% pour l’uranium 235, le fissible, et 99,3% pour l’uranium 238. Il y a aussi un tout petit peu d’uranium 234 (0,0057%). A l’exception des réacteurs Candu au Canada, qui fonctionnent avec de l’uranium naturel, les réacteurs nucléaires utilisent un combustible qui contient de 3,5% à 5% d’uranium 235. Il faut donc « enrichir » l’uranium naturel : c’est une étape complexe et coûteuse industriellement. Selon le HCTISN, en moyenne sur les trois dernières années, il a fallu 8 100 tonnes d’uranium naturel pour produire 1 033 tonnes de combustible nucléaire. Le reste étant de l’uranium appauvri.

L’uranium appauvri n’est pas considéré comme un déchet, car une petite partie est utilisée comme nous le verrons plus tard et le reste est potentiellement utilisable dans l’avenir si la génération IV des réacteurs nucléaires voit le jour. C’est donc un « stock stratégique ».

Ces chiffres sont cependant à manier avec précaution car, dans ce même rapport, on peut lire qu’en 2008 EDF a importé 8 695 tonnes d’uranium naturel pour son parc. Cela fait 7,3% de plus que la valeur moyenne annoncée. Par ailleurs, en fonction des cours de l’uranium, le processus d’enrichissement sera plus ou moins poussé, comme illustré dans le tableau ci-dessous.

 

Production de 1000 t d’uranium enrichi à 4%  (dont 40 tonnes
d’uranium 235)

Quantité d’uranium
naturel nécessaire

(dont uranium 235)

7436 tonnes (52 tonnes 235U)

8134 tonnes (57 tonnes 235U)

9002 tonnes (63 tonnes 235U)

Quantité d’uranium
appauvri généré par l’enrichissement (dont uranium 235)

6436 tonnes (12 tonnes 235U)

7134 tonnes (17 tonnes 235U)

8002 tonnes (24 tonnes 235U)

Teneur de l’uranium
appauvri en uranium 235

0,20%

0,25%

0,30%

Illustration de la possibilité d’arbitrage entre uranium et services d’enrichissement

A la sortie du réacteur, seule une partie de l’uranium 235 contenue dans les combustibles a été consommée : il en reste de l’ordre de 0,8 à 0,9%, c’est-à-dire plus que dans la nature. L’uranium 238, quand il est bombardé par des neutrons, a tendance à se transformer par radioactivité en plutonium, qui lui, peut fissionner plus facilement. Bref, une partie du combustible qui sort des centrales nucléaires est a priori réutilisable. A 96% selon les exploitants. C’est l’objet du retraitement qui a pour but de séparer chimiquement les matières valorisables des déchets ultimes. Certains pays comme la Suède ou les Etats-Unis ont choisi de ne pas retraiter. Tout ce qui sort de leurs centrales constitue donc des déchets ultimes.

Sur les 1 033 tonnes de combustibles neufs qui entrent annuellement dans le parc de réacteurs français, 850 tonnes par an sont retraitées après un séjour de 3 ans en réacteur. Areva en extrait 8,5 tonnes de plutonium et 800 tonnes d’uranium dit de retraitement. Le reste constitue des déchets ultimes. Quant au combustible non retraité, il n’est pas classé dans les déchets car il pourra être retraité un jour.

Avec les 8,5 tonnes de plutonium, mélangées à 91,5 tonnes d’uranium  appauvri, ce sont 100 tonnes de combustible MOx qui s’ajoutent aux 1033 tonnes de combustible neuf. Ce combustible de recyclage peut alimenter partiellement 22 réacteurs autorisés en France. Cela correspond en moyenne à 20 recharges par an et produit la même énergie qu’un combustible « classique » contenant 3,7%  d’uranium 235.

Sur les 800 tonnes d’uranium de retraitement, 300 sont envoyées en Russie, à Tomsk, pour être réenrichies. Les 500 tonnes restantes viennent s’ajouter tous les ans au « stock stratégique ».  La Russie renvoie en France 37 tonnes de combustible par an et garde les 263 tonnes d’uranium appauvri. L’uranium de retraitement réenrichi alimente deux des réacteurs de la centrale de Cruas le long du Rhône.

Le recyclage se limite donc à 100 tonnes de combustible MOx et les 37 tonnes de combustible à base d’uranium de retraitement, qui viennent s’ajouter aux 1 033 tonnes de combustible classique dans les réacteurs. Les combustibles recyclés ne sont pas à nouveau retraités ni recyclés après leur passage en réacteur. Il n’y a donc qu’un tour de recyclage.

Au total, ce sont donc 1 170 tonnes de combustibles usés qui sortent des réacteurs par an. Ainsi, 8,5 tonnes de plutonium plus 37 tonnes d’uranium de retraitement sur 1 170 tonnes de combustible, cela ne fait que 3,9% de recyclage. On est loin des 96% fanfaronnés par l’industrie nucléaire ! Si l’on ajoute l’uranium appauvri, les 137 tonnes de combustible issu du recyclage permettent une économie de 11,7% d’uranium naturel. C’est bien en dessous des 20 à 25% affichés par Areva !

Et encore, ces chiffres correspondent à la meilleure performance de l’industrie nucléaire qui n’a pas voulu remonter plus loin dans le temps. La réutilisation de l’uranium de retraitement n’a commencé qu’en 1994, alors que le retraitement a commencé en 1966. Le recyclage du plutonium était aussi bien moins important dans le passé.

EDF et Areva ont signé un contrat pour le retraitement de 1050 tonnes par an à partir de 2010. Cela devrait conduire, , à une économie de 17% pour l’uranium naturel et un taux de recyclage de ce qui sort des réacteurs de 7,3% si EDF obtient l’autorisation de passer à 4 réacteurs pour l’uranium de retraitement et à 24 pour le MOx. Cette performance ne sera atteinte qu’en allant puiser 75 t par an dans les stocks de combustibles usés non retraités jusqu’à maintenant. Comme il n’y a qu’un tour de recyclage, ces chiffres sont très proches du maximum atteignable avec les technologies du « cycle » actuel.

A titre de comparaison, le Japon, qui a fait retraiter une partie de ses combustibles usés à l’étranger (France et Grande-Bretagne), commence tout juste à brûler du MOx et n’a réutilisé qu’une très petite quantité d’uranium de retraitement. Le gain est quasi nul alors qu’il a investi dans une usine de retraitement qu’il n’arrive pas à faire démarrer.

On peut difficilement parler de « cycle » du combustible… Le mot « chaîne » semble plus approprié.


Chaîne annuelle de l’uranium

 8100 tonnes d’uranium naturel→ Enrichissement →

1033 tonnes de combustibles neufs + 7 067 tonnes d’uranium appauvri (UA)

 CHAINE ANNUELLE DU COMBUSTIBLE 


1033 tonnes combustiblesneufs→  Réacteur→
combustibles usés :

· 850 tonnes combustibles usés sont retraitées 

· combustible usé non retraité entreposé.

Retraitement des 850 t→ 

800 t d’uranium de retraitement + 8,5 t de plutonium + déchets
ultimes

Ces 800 t d’uranium de retraitement

· 500 tonnes  matières entreposées (stock stratégique)

· 300 t envoyées à Tomsk en Russiepour réenrichissement

→ 263 tonnes d’uranium appauvri, entreposées en Russie

37 t d’uranium de recyclage enrichi (URE) → Réacteur



Retour Réacteur : 37 t URE + 8,5 plutonium (PU)


 

7 067 t d’ d’uranium appauvri (UA)

91,5 tonnes d’UA + 8,5 t de PU = 100t MOX→ réacteur

Reste 6975,5 t d’UA

→ Matières entreposées

(= stock stratégique)

 



Retour Réacteur 91,5t UA

Soit un  recyclage de 3,9 % au lieu des 96% annoncés et donc une économie d’uranium de 12% !

La perspective d’une génération IV permet de tout justifier

Les matières nucléaires non recyclées, ne sont pas considérées comme déchets, mais comme matières potentiellement valorisables. L’industrie nucléaire parie sur la génération IV des réacteurs nucléaires pour transformer ces matières en trésor qui permettrait d’avoir de l’électricité pendant des millénaires. Mais c’est déjà ce que devait faire Superphénix, avec le succès que l’on sait. A son démarrage, pleine d’espoir dans son avenir, l’industrie nucléaire avait fait miroiter son développement avant l’an 2000.  Et ces fameux réacteurs de génération IV sont des réacteurs à neutrons rapides basés sur le même principe que Superphénix. (Voir encadré sur le sujet). Bref, c’est toujours le même message : demain on rase gratis.

Même les autorités sont sceptiques : dans le nouveau Plan national de gestion des matières et déchets radioactifs (PNGMDR), elles ont demandé aux exploitants de trouver des solutions pour ces matières si la génération IV ne se faisait pas ou partiellement et que ces matières prétendument recyclables devenaient des déchets.

Mais en attendant, les combustibles non retraités, l’uranium de retraitement non utilisé et l’uranium appauvri sont entreposés, en attendant des jours meilleurs. Le devenir de près de 97,8% de l’uranium initial qui sort de la mine est en suspens. Il y a là une autre entourloupe : 97,8% de ce qui sort de la chaîne de l’uranium n’est pas utilisé, mais n’est pas considéré comme déchet ! Et Areva d’affirmer ainsi que les déchets tiennent dans une piscine olympique !

La génération IV sert donc d’abord à justifier le retraitement actuel. Parce que la France s’est enfoncée dans cette voie, elle n’a pas d’autre alternative que le succès de ces réacteurs au risque de perdre son trésor. Un peu comme un joueur qui a trop misé et qui s’enfonce de plus en plus dans l’espoir de récupérer sa mise.

Pourtant, en regardant froidement la situation, il serait préférable de garder les combustibles irradiés en entreposage le temps que la génération IV soit opérationnelle et de ne retraiter que selon le besoin. Les combustibles usés seront alors beaucoup moins radioactifs, ce qui simplifierait leur manutention et diminuerait les rejets radioactifs de l’usine de retraitement de La Hague.

Stocks de « non-déchets » accumulés

A la fin 2008, Areva détenait 22 610 tonnes d’uranium de retraitement, entreposées en majorité au Tricastin et 261 000 tonnes d’uranium appauvri d’origine naturelle. Pour connaître les stocks de combustibles usés non retraités détenus par EDF et entreposés à La Hague, il faut consulter le PNGMDR. Fin 2007, il y en avait près de 13 000 tonnes, dont 11 500 de combustibles classiques.

Le bilan des matières accumulées est compliqué par les échanges internationaux de matière. EDF s’approvisionne en uranium à l’étranger et a recours à 4 enrichisseurs différents pour son combustible. Réciproquement, Areva exporte environ la moitié de l’uranium qu’elle enrichit en France. L’uranium appauvri qui résulte de ces opérations reste la propriété de l’enrichisseur. C’est en particulier le cas pour la partie de l’uranium de retraitement qui est envoyée en Russie pour enrichissement. La loi française interdit le stockage en France de déchets étrangers, mais pas des matières valorisables. Si ces matières sont déclassées en déchet, devront-elles être renvoyées vers leur pays d’origine ? Nous n’avons pas obtenu de réponse.

En conclusion, le HCTISN est un des rares espaces où l’on peut espérer obtenir des informations non disponibles ailleurs. Malheureusement, le rapport sur le « cycle » du combustible est trop monolithique, n’autorisant aucune expression différant de l’orthodoxie officielle. Il n’a pas été possible d’y faire apparaître que moins de 4% de ce qui sort des réacteurs français est recyclé. Le Haut Comité n’a pas souhaité diffuser le rapport complémentaire des associations. C’est regrettable pour une structure qui est supposée être garante de la transparence et de l’information. Mais les chiffres qu’il donne, s’ils sont confirmés, permettent à chacun de faire le bilan du « cycle » du nucléaire.

Pour en savoir plus, vous pouvez consulter :

– le rapport du HCTISN sur http://www.hctisn.fr

les commentaires des associations sur notre site

– le PNGMDR sur le site de l’ASN : http://asn.fr

 

Voir le communiqué de presse commun ACRO, FNE (France Nature Environnement), Greenpeace du 13 juillet 2010

Voir informations sur la génération IV


[1]  HCTISN : Haut Comité à la Transparence et à l’Information sur la Sûreté Nucléaire, http://www.hctsin.fr

 Ancien lien

Mesures à proximité du train de déchets à destination de l’Allemagne

Communiqué ACRO du 6 novembre 2010

A la demande de Greenpeace et des élus Verts-Europe-Ecologie du Conseil régional, l’ACRO est intervenue pour procéder à des mesures des radiations émises lors du passage du train transportant les déchets vitrifiés à destination de l’Allemagne.

Cette action s’est déroulée le vendredi 5 novembre au départ du train à la sortie du terminal ferroviaire de Valognes.

L’exploitant a modifié à la dernière minute le lieu de raccordement du train (là où l’ACRO et Greenpeace devaient opérer les mesures) de sorte que nous ne puissions pas faire des mesures statiques (le train à l’arrêt).

Malgré tout, alors que le train était déjà lancé à une certaine vitesse, nos appareils ont très bien détecté ces radiations gamma et neutroniques même si, dans ces conditions de mesures nous ne pouvons donner des chiffres précis.

Pour autant, ce que nous avons détecté nous interpelle et nous incite à douter du respect des limites imposées par la réglementation sur les transports de matières radioactives.

cp061110

Gestion des déchets radioactifs : les leçons du Centre de Stockage de la Manche (C.S.M)

Gestion des déchets radioactifs : les leçons du Centre de Stockage de la Manche (C.S.M) Version 2009