Page 1 sur 212

La radioactivité expliquée aux enfants

ACROnique du nucléaire n°101

suivie de

ACRO
138, rue de l’Eglise
14200 Hérouville St Clair
https://acro.eu.org

Toute la matière qui nous entoure, l’eau, l’air, la terre…, nous, sommes faits de petits grains, extrêmement petits que l’on appelle « atomes ». Il y en a 92 différents en tout. Comme pour les blocs de légo, tout dans l’univers, des étoiles à nous, est « fabriqué » à partir de ces 92 atomes. Il y a d’autres atomes fabriqués par l’homme.

Chaque atome a un nom : le numéro 1, qui est le plus petit, s’appelle « hydrogène » et le n°92, qui est le plus lourd, « uranium ». Entre les deux, il y a sûrement des noms que tu connais, comme oxygène, or, fer… Deux atomes d’hydrogène accrochés à un atome d’oxygène forme un petit bloc qui est l’eau.

Mais je m’écarte du sujet. Certains de ces atomes sont dits « radioactifs ». Comme un canon, ils peuvent tirer un petit obus encore plus petit que l’atome lui-même. Ce sont ces petits obus qui sont dangereux, car ils peuvent traverser le corps humain comme quand on va faire une radio.

Dans un réacteur nucléaire, il y a énormément d’atomes radioactifs qui tirent des obus. C’est pourquoi ils sont enfermés dans un coffre-fort que l’on appelle « enceinte de confinement ». Le problème à la centrale de Fukushima, c’est que les atomes radioactifs s’échappent dans l’eau et dans l’air. Certains retombent près de la centrale, d’autres sont emportés par les vents tout autour de la Terre.

Un atome radioactif ne vise pas. S’il est à côté de nous, il y a des chances que l’obus parte au loin. Mais si l’on mange des légumes pollués, que l’on boit de l’eau polluée ou que l’on respire de l’air pollué par des atomes radioactifs, les obus tirés par les atomes dans le corps vont faire des dégâts à tous les coups !

Evidemment, il y a beaucoup plus d’atomes qui retombent près de la centrale accidentée. C’est pourquoi toute la centrale et ses environs sont très pollués par des atomes radioactifs qui tirent dans tous les sens.

Les travailleurs sur place, se protègent en s’emballant dans un vêtement qui les recouvre entièrement et mettent un masque sur le visage pour ne pas respirer de poussière radioactive. Mais ils ne peuvent rien contre le bombardement radioactif et ne peuvent donc pas rester longtemps sur place.

Quand on est loin et qu’il y a peu d’atomes, on risque moins d’être bombardé. Le principal problème est alors l’alimentation et la boisson.

La plupart des atomes radioactifs ne peuvent tirer qu’une seule fois, un ou deux obus à la fois. Après, ils ne sont plus radioactifs. Certains tirent très vite et la pollution ne dure pas longtemps, faute de munitions. C’est le cas par exemple pour l’atome appelé « iode 131 » qui était rejeté à Fukushima. Au bout de huit jours, il n’en reste que la moitié qui sont radioactifs. Après seize jours, plus qu’un quart. Et ainsi de suite… Pour celui appelé « césium 137 », cela prend trente ans et donc la pollution radioactive va rester longtemps ! C’est pourquoi il faudra un système de surveillance de la pollution pendant de longues années pour se protéger.

Le becquerel sert à compter le nombre d’atomes radioactifs : si l’on te dit qu’il y a 1000 becquerels, cela veut dire qu’il y a 1000 tirs d’obus par seconde.


La mesure de la radioactivité expliquée aux enfants

On a vu que la radioactivité était due à de méchants atomes tout tout petits qui pouvaient lancer des obus minuscules. Il y a deux façons d’être atteint par ces obus.

Soit l’on est dans une zone où il y a beaucoup d’atomes radioactifs qui tirent dans tous les sens et la seule façon de se protéger est de s’éloigner. C’est pourquoi les gens qui habitent autour des centrales de Fukushima ou de Tchernobyl ont dû partir.

La radioactivité, on ne la sent pas, on ne la voit pas, on ne l’entend pas. Alors il faut la mesurer avec des appareils spéciaux pour s’en protéger.

La mesure de cette forte radioactivité peut se faire avec de petits appareils qui comptent le nombre d’obus qui les cognent. Plus il y a d’obus et plus c’est dangereux.

Comment sait-on si c’est un peu dangereux, moyennement dangereux ou très dangereux ? Alors là, cela devient très compliqué car il y a plusieurs sortes d’obus : certains font plus de mal que d’autres. En plus, tous les obus ne cognent pas tous avec la même force : certains ont plus d’énergie que d’autres et sont donc plus dangereux.

Pour estimer la gravité des blessures dues aux obus, on utilise le sievert. Une personne qui reçoit quelques sieverts risque de mourir après quelques mois. Généralement, on compte donc avec une unité plus petite, le millisievert, comme pour les millimètres. La population ne doit pas recevoir plus d’un millisievert par an car les obus peuvent provoquer des cancers ou d’autres maladies qui apparaîtront bien plus tard.

Il existe des petits appareils qui peuvent mesurer les millisieverts pour surveiller tout cela.

Quand les atomes radioactifs sont à côté de toi, ils tirent dans tous les sens sans viser et seulement une petite partie peut t’atteindre. Il en faut beaucoup pour être dangereux. Mais si les atomes radioactifs sont dans ton corps, tous les obus vont te blesser et une toute petite quantité suffit à être dangereuse.

Il faut donc faire attention aux aliments que l’on mange, à l’air que l’on respire et à l’eau que l’on boit. C’est pour cela qu’il faut les surveiller en mesurant la quantité d’atomes radioactifs. Et là, c’est plus difficile parce qu’il y a déjà de la radioactivité dans la nature contre laquelle on ne peut rien, puisqu’il y en a partout.

En essayant de compter le nombre d’obus tirés par les atomes radioactifs d’un bol de myrtilles par exemple, on va avoir des obus qui viennent des myrtilles, mais aussi du bol, de la table etc etc. Si les myrtilles sont peu radioactives, on pourra rester à côté d’elles sans danger, mais il se peut que l’on ne puisse pas les manger. Comment faire alors pour savoir ?

A l’ACRO, comme dans les autres laboratoires, on utilise deux astuces : d’abord on enferme le bol de myrtilles dans un coffre-fort en plomb qui arrête les obus naturels qui viennent de loin. Et puis, l’appareil que l’on utilise est plus sophistiqué que ceux dont j’ai parlés avant : ils peuvent mesurer l’énergie des obus et faire un tri entre les obus qui viennent de la nature et les obus qui viennent de la pollution dans les myrtilles. Ainsi, on peut dire exactement combien d’atomes radioactifs dus à la pollution sont dans les myrtilles et donc décider si on peut les manger ou non. Une mesure peut prendre plusieurs heures.

On exprime le résultat en becquerel : cela permet de savoir combien il y a d’atomes radioactifs dans l’alimentation, l’eau et l’air. Le gouvernement japonais a décidé par exemple qu’il ne devait pas y avoir plus de 500 becquerels de césium 137 dans un kilo d’aliment.

On ne peut pas mesurer directement la gravité des blessures que tu auras si tu manges un aliment contaminé. On fait alors des calculs pour savoir combien de millisieverts cela fait.

Tous ces millisieverts s’ajoutent et il faut faire attention.


Les effets de la radioactivité expliqués aux enfants

Dans « la radioactivité expliquée aux enfants », nous avons vu que les atomes radioactifs peuvent tirer un petit obus encore plus petit que l’atome lui-même. Ce sont ces petits obus qui sont dangereux, car ils peuvent traverser le corps humain comme quand on va faire une radio.

Si l’on prend une balle dans le cœur, on meurt à tous les coups, pas si c’est dans le bras. C’est un peu pareil avec la radioactivité : les obus microscopiques ne heurtent pas toujours une partie vitale. Il y a des chanceux et des malchanceux. On parle alors d’effets « stochastiques ». S’il y a beaucoup de radioactivité, et donc beaucoup d’obus tirés, il y a plus de risques de toucher une partie importante du corps. Il n’y a plus de chanceux : tout le monde tombera malade, voire mourra si la dose est très très forte. On parle alors d’effets « déterministes ».

Quand on veut protéger l’Homme, on veut protéger chaque individu, les chanceux comme les malchanceux. On va donc s’intéresser aux faibles doses, sachant qu’il n’y a pas de limite d’innocuité, chaque dose est engendre un risque, même la plus petite. Il y a déjà la radioactivité naturelle contre laquelle on ne peut rien. On n’accepte aucune dose de radioactivité supplémentaire créée par l’homme, sauf s’il y a un bénéfice. C’est le cas de certains malades par exemple, que l’on peut soigner grâce à la radioactivité, même si l’on prend le risque de provoquer d’autres maladies plus tard. Dans ce cas, on essaye alors que la dose de radioactivité administrée soit la plus basse possible. Et puis, il y a des limites à ne pas dépasser qui correspondent à un risque jugé acceptable.

Depuis quelques années, il est aussi devenu important de protéger aussi l’environnement. Pas uniquement l’Homme. Et là, les critères sont complétement différents. Ce que l’on veut protéger, c’est une espèce, pas chaque individu. Peu importe s’il y a des malades ou des morts. Ce qui compte, c’est que l’espèce survive. Certains vont même plus loin et pensent qu’il ne faut protéger que les espèces importantes des écosystèmes et pas nécessairement toutes les espèces. Ils sont donc même prêts à accepter la disparition de certaines espèces à cause de la radioactivité à la condition que l’écosystème survive.

C’est la même chose quand on construit une route et que l’on coupe une forêt par exemple. On accepte la destruction d’écosystèmes sous le prétexte qu’il en existe de similaires ailleurs.

Les études des effets de la radioactivité sur l’environnement ne s’intéressent donc qu’aux fortes doses et aux effets dits « déterministes ». Cela ne veut pas dire que les faibles doses n’ont pas d’effet. Il y a aussi des malchanceux chez les animaux ou les plantes. On ne s’y intéresse pas.

A partir de quand dit-on qu’il y a un effet ? Quand 50% d’une espèce a disparu ? Au bout de combien de générations ? Se pose aussi la question encore plus difficile des pollutions multiples : on peut imaginer qu’un animal ou une plante fragilisés par un polluant résisteront moins bien aux fortes doses de radioactivité. Bref, pour le moment, on ne connaît pas grand-chose, les recherches n’en étant qu’à leur début.

Le cas des abeilles est parlant : certains pesticides ne les tuent pas, mais il semblerait qu’ils font qu’elles se perdent et ne retrouvent plus leur ruche. Limiter les études aux décès n’est donc pas suffisant.

Ancien lien

子供たちに対する放射能の説明

ACRO
138, rue de l’Eglise
14200 Hérouville St Clair
France
https://acro.eu.org

 私たちが取り囲まれているすべての物質、水、大気、土、我々も小さな粒でできてい る。我々が「原子」と呼んでいる小さな粒である。全部で92種類あり、レゴのブロックのように、遠い星と我々の体自体も含む宇宙全体はなにもかも、この 92種類の原子から“作られている”。その他に人間の手によって作られた原子がある。

それぞれの原子には名前がある。もっとも小さい1番の原子は「水素」と呼ばれ、92番の最も重い原子は「ウラン」と呼ばれる。この2つの間には恐らくあ なたも知っている名前があるでしょう。例えば酸素、金、鉄など。一つの酸素原子にくっついた二つの水素原子は水という小さな塊を形成する。

本題に入る。いくつかの原子は「放射能」だと言われている。大砲のように、鉄砲のように、そのような原子は原子自身よりももっと小さい弾丸を発射するこ とができる。その小さな弾丸こそ危険である。というのも、人体を通り抜けることができるからだ。我々がレントゲンを撮ろうとするときのように。

原子炉の中には非常に多くの弾丸を放つ原子がある。というわけで、それらは我々が格納容器と呼んでいる金庫のような箱の中に閉じ込められている。福島原 発での問題は、それらの放射能が水中や大気中に逃げたことである。ある原子は発電所の近くの地面に落ち、もう一方は風によって地球全体のあちこちに運ばれ ている。

放射能は、ただ小さな弾丸を発射しているだけで、特定のものを狙っているわけではない。もしそれが我々の近くにあるならば、弾丸は遠くに離れる可能性が ある。しかし放能によって汚染された野菜を食べ、水を飲み、空気を吸っただけでも我々の体内で発射された弾丸は深刻な被害をもたらすのである。

もちろん、壊れた発電所の近くに落ちる原子の方が遠いところに飛んでいく原子よりもはるかにたくさんある。というのは、福島発電所全体とその周辺の汚染度は極めて高い。そこから放射能はあちこちに弾丸を発射している。

現場の労働者は、自分の身を守るために、体全体を防除服に包み、放射能の埃を吸わないように、顔にはマスクを着けている。しかし彼らは放射能の爆撃に対して何もできず、長い間その場にとどまることもできない。

遠く行くほど、原子は少なくなり、爆撃の危険性が減る。本当の問題は食飲摂取によるものである。

ほとんどの原子は一回にたった1つか2つの弾丸しか発射できない。そしてそれらはもはや放射能を含んでいない。いくつかは速く発射され、そして汚染は長 く続かない。弾丸がなくなったからである。現在、福島で排出された「ヨウ素131」と呼ばれる原子はその一例である。要素131の場合は、8日後、放射能 は半減する。また16日後には4分の1以下となる。このように徐々に減っていく。「セシウム137」と呼ばれる原子は30年間かけてその放射性物質を減ら す。従って長くとどまることとなる。そのため、長年の間身を守るために、汚染を監視するシステムが必要になるだろう。

ベクレルというのは、放射性原子の数を数える単位である。もし1000ベクレルあると言われたら、それは1秒間に1000もの弾丸が発射されていることを意味している。


子供たちのための放射能測定の説明

『放射能は極めて小さなたちの悪い原子によるものである。その原子は、小さな弾丸を発射することができる。』ということを私たちは前回の『子供たちのための放射能の説明』から学んできた。これらの弾丸は2通りの方法で人間を傷つける。

もし、あちらこちらに弾丸を発射する悪い原子がたくさんいるところに人がいれば、身を守るたった1つの方法は遠くへ逃げることだ。だから福島とチェルノブイリの発電所近くに住んでいた人たちは遠くへ移動しなければならなかった。

人間は放射能がすぐ側にあっても何も感じない上に、何も見えない、そして何も聞こえない。放射能から身を守るために特殊な機器で測定しなければならない。

この強い放射能の測定は小さな機器を使って行われる。原子が発射する弾丸がその機器に当たることで弾丸の数を測定するのである。弾丸が多くなればなるほど危険度は高くなる。

そうすると、その危険度が低いのか、高いのか、それともそれほどでもないのかはどのようにわかることができるのだろうか。

その危険度の判断は弾丸の種類がたくさんあるため、とても難しい。なぜならある弾丸は他の弾丸よりも悪かったりするからだ。また、全ての弾丸が同じ強さで当たるわけではない。他の弾丸よりもエネルギーを持っているためにさらに危険な弾丸もある。

弾丸によるけがの具合を推定するために、私たちは『シーベルト』という単位を使う。いくらかのシーベルトを浴びた人は何ヶ月後かに死ぬ恐れがある。一般的 には、ミリメートルのようにもう1つ小さい単位の『ミリシーベルト』を使って測定する。人は1年間に1ミリシーベルト以上の弾丸を浴びてはならない。なぜ なら、弾丸は時間が経ってから発症するガンやその他の病気を引き起こす可能性があるからだ。

これら全ての弾丸を監視するためにミリシーベルトを測定できる小さな機器がある。

放射性の原子があなたの近くにあるとき、その原子はどこも狙わずあちらこちらに弾丸を発射し、その中の極一部分があなたの体に当たる。あなたがいるところ に放射能がたくさんなければ、それほど危険な状態にはならない。しかし、放射能を放つ原子が少しでもあなたの体の中にあれば弾丸はあなたを傷つけ、とても 危険な状態になる。だから体の中にほんのちょっとでも弾丸があれば危険ということでる。

それを考えると私たちは自分たちが食べている物や、吸っている空気、飲んでいる水にも注意しなければならない。そのために食べ物や水、空気の中の放射能の量を常に検査しなければならない。

自然の中にはすでに放射能があるため、そこで食べ物などの中の放射能を検査するのはとても難しい。自然の中にある放射能に対して人間は何もできないし、放射能はあちらこちらに散らばっているのでその測定はややこしくなる。

例えば、ボール1杯のブルーベリーの中に放射性の原子による弾丸がどのくらいあるのか数えてみるとする。すると、ブルーベリーの中から出てくる弾丸もあれ ばボールやテーブルから出る弾丸もある。もしブルーベリーの中に放射能が少ししかなければ近くにいても危険ではないけれど、私たちはそのブルーベリーを食 べることができないかもしれない。それでは、そのブルーベリーを食べられるかどうかを知るためにはどうすればよいのか?

ACROという私たちフランス市民の研究所と他の研究所では2つのコツを使っている。まず、ボール1杯のブルーベリーを鉛の金庫の中に入れておく。その金 庫は遠くからきた自然の弾丸を止めることができる。ACROが使っている機械はかなりいい機械である。その機械は弾丸のエネルギーを測ることができるし、 弾丸が自然からのものなのか、ブルーベリーの中にあるものなのかを識別することもできる。そうすると、ブルーベリーの中に放射能汚染による原子がどのくら いあるか正確に知らせることができると同時に、そのブルーベリーを食べても大丈夫かそうでないかも判断することができる。1回測定するのに何時間もかか る。

その結果をベクレルで表す。ベクレルの数は食べ物や水、空気の中に放射性の原子がどのくらいあるのかを表す。例えば、日本政府は1キロの食べ物の中にセシウム137が500 ベクレル以上あってはならないと決めた。

もし、汚染された食べ物を食べたら、そのけがの深刻さを直接測ることができない。なので、私たちはその汚染された食べ物にどのくらいミリシーベルトがあるのか知るために様々な計算をする。

これら全てのミリシーベルトは体の中に蓄積されるので注意しなければならない。

Ancien lien

Radioactivity explained to children

ACRO
138, rue de l’Eglise
14200 Hérouville St Clair
https://acro.eu.org

All matter around us, water, air, earth… we are made of small grains, very small grains called “atoms”. There are 92 different kinds altogether. As with Lego blocks, everything in the universe, from stars to us, is “manufactured” from these 92 atoms. There are other man-made atoms.

Each atom has a name: the number 1, which is the smallest, is called “hydrogen” and No. 92, which is heaviest in nature, “uranium.” In between, there are certainly names that you know, like oxygen, gold, iron … Two hydrogen atoms attached to an oxygen atom form a small block that is water.

But I digress. Some of these atoms are said to be “radioactive.” Like a cannon, they can fire a small shell even smaller than the atom itself. These small shells are dangerous because they can penetrate the human body as when you go to an X-ray.

In a nuclear reactor, there are a lot of radioactive atoms that fire shells. That is why they are locked in a vault called “containment.” The problem at the Fukushima plant is that the radioactive atoms escape into the water and in air. Some fall near the plant, others are carried by winds around the Earth.

A radioactive atom has no target. If it is next to us, it is likely that the shells go away. But if you eat contaminated vegetables, drink polluted water or breathe air polluted by radioactive atoms, the shells fired by the atoms in the body will do damage every time!

Obviously, there are many more atoms that fall near the power plant. Therefore, the power plant and its surroundings are contaminated by radioactive atoms that fire in every directions.

Workers on site protect themselves in a garment that covers them completely and put a mask on the face to avoid breathing radioactive dust. But they can do nothing against the bombing from radioactivity and cannot stay long there.

When you are away and there are few radioactive atoms, you are less likely to be bombed. The main problem is food and drink.

Most of the radioactive atoms can fire only once, one or two shells at a time. Then they are no longer radioactive. Some fire very quickly and the pollution does not last long due to lack of ammunition. This is the case for the atom called “iodine 131” which was rejected by the Fukushima nuclear power plant. After eight days, only the half of them are radioactive. After sixteen days, only a quarter remains. And so on … As the atom called “cesium 137”, it takes thirty years and therefore the radioactive pollution will remain a long time! The pollution should be monitored for years to protect oneselves.

The becquerel is used to count the number of radioactive atoms: if you are told there is 1000 becquerels, it means that there are 1000 shelling per second.

Ancien lien

Bioaccumulation – bioamplification – bio-indicateur

Fiche technique parue dans l’ACROnique du nucléaire n°85 de juin 2009


On retrouve parfois certaines substances chimiques de façon plus concentrée dans les organismes vivants que dans le milieu qui les entoure (eau, air…). On parle alors de « bioaccumulation ». Ce phénomène est utile à la vie quand il s’agit d’oligo-éléments (fer, calcium…) et néfaste quand il s’agit de polluants (métaux lourds, PCB …).

La bioaccumulation a parfois tendance à augmenter le long d’une chaîne alimentaire. On parle alors de « bioamplification ». Ainsi, dans un même milieu, la concentration en PCB ou en mercure augmente du plancton au poisson et du poisson au mammifère marin ou à l’homme en bout de chaîne. Dans le cas du mercure, cette propriété a créé une catastrophe sanitaire à Minamata au Japon.

Chez un même organisme, l’ampleur de la bioaccumulation peut dépendre de l’organe, de l’âge et de la substance chimique.

Le phénomène peut être de grande ampleur. Pour une surveillance de l’environnement, on choisit généralement des organismes accumulant les polluants recherchés : on parle alors de « bio-indicateurs ». Ainsi, certains polluants présents sous forme de traces ne peuvent pas être détectés directement dans l’air ou l’eau, mais leur présence peut être détectée et quantifiée en utilisant des bio-indicateurs. Les lichens sont connus pour être d’excellents bio-indicateurs de la qualité de l’air pour de nombreux polluants.

Les phénomènes de bioaccumulation et de bioamplification s’expliquent par les propriétés chimiques de certaines substances qui se lient plus facilement à des molécules organiques qu’à l’eau. Lors de échanges entre l’organisme vivant et le milieu, elles s’accumulent donc dans l’organisme. Ce phénomène peut aller en s’amplifiant le long de la chaîne alimentaire.

Le fait d’avoir des polluants radioactifs ne change rien à l’affaire. Ce sont leurs propriétés chimiques qui font qu’ils peuvent s’accumuler dans certains organismes vivants. Ainsi, l’iode radioactif s’accumule de la même façon que l’iode non radioactif dans les algues.

Qu’en est-il du tritium, qui est de l’hydrogène radioactif ? L’atome d’hydrogène lié à une molécule d’eau s’échange facilement et fait que le tritium présent dans de l’eau s’équilibre rapidement. Les organismes primaires peuvent convertir rapidement le tritium de l’eau (appelé tritium libre) en tritium organique. Et tous les modèles d’impact sanitaire des radioéléments dans l’environnement supposent que la proportion de tritium sur l’hydrogène total est la même dans l’eau et dans les organismes vivants.

Or des données tendent à mettre en évidence les phénomènes de bioaccumulation et de bioamplification du tritium chez certains organismes aquatiques, contredisant ainsi les modèles d’impact. Dans la baie de Cardiff en Grande-Bretagne, cela peut s’expliquer facilement par le fait que ce sont des molécules organiques tritiées rejetées en mer, pour lesquelles l’hydrogène est moins mobile que celui de l’eau. Il s’accumule facilement dans la matière organique des organismes vivants, mais est transféré difficilement vers l’eau de mer.

En revanche, c’est de l’eau tritiée qui est rejetée des installations nucléaires. On observe pourtant de la bioaccumulation du tritium chez des espèces vivant dans les fonds marins au large de l’usine de retraitement de Sellafield en Grande-Bretagne. En France, au large de l’usine de La Hague, il n’y a pas assez de mesures pour pouvoir conclure. L’ACRO réclame donc une meilleure surveillance du tritium dans l’environnement proche des installations nucléaires.

Ancien lien

Les radiations ionisantes

Texte écrit pour le Dictionnaire des risques (Armand Colin 2003 et 2007) et paru dans l’ACROnique du nucléaire n°64, mars 2004


Les radiations ionisantes correspondent à des rayonnements électromagnétiques ou particulaires possédant une énergie associée supérieure à 10 électron-volt (eV). En-dessous de cette valeur en énergie, les radiations sont dites « non ionisantes » et on y classe notamment les rayonnements ultra-violets ou encore les champs électromagnétiques de très basse fréquence. Ces derniers, bien que « non ionisants », ne sont pas pour autant dépourvus d’effets pathologiques chez l’homme ou l’animal.

Ce qualificatif de « ionisant » est important car il va désigner le mécanisme initiateur (à l’échelle moléculaire) qui sera à l’origine même de la toxicité de cette classe de radiations. Sur son parcours, une radiation créera en moyenne une paire d’ions pour un dépôt d’énergie de 33 eV. Ainsi, une particule alpha de 5,3 MeV (millions d’eV) générera plus de 150 000 paires d’ions sur un parcours de 40 µm dans les tissus. Si les radiations ionisantes se classent en fonction de leur nature, leur toxicité respective sera également une manière de les distinguer. De façon résumée, cette toxicité propre sera d’autant plus élevée que la densité d’ionisation produite sera grande.
Les radiations ionisantes agissent suivant deux voies d’action dont la contribution respective aux dégâts biologiques radio-induits restent l’objet d’un débat scientifique. D’une part, elles génèrent des cassures moléculaires (c’est l’effet direct), d’autre part, elles provoquent la radiolyse de l’eau (c’est l’effet indirect) conduisant à la formation de radicaux libres qui constituent des espèces moléculaires fortement toxiques.
La chronologie des événements qui surviennent consécutivement à une irradiation souligne une échelle de temps joignant les extrêmes. Le phénomène d’ionisation est quasi-instantané (10-15 sec), de même que la production de radicaux libres (10-9 sec) et les lésions sur le patrimoine génétique seront instaurées dans la seconde voire la minute qui suit l’irradiation. On comprend dès lors toute l’importance de la prévention mise en avant dans l’exercice de la radioprotection. Si ces lésions moléculaires peuvent être à la cause d’effets pathologiques visibles dans les jours et les semaines qui suivent (cas des fortes doses), elles seront aussi à l’origine d’effets tardifs pouvant survenir des années (voir plusieurs dizaines d’années) après l’exposition (en particulier la radio-cancérogénèse) ou encore dans la descendance (effets génétiques).

L’homme est exposé aux radiations selon différentes voies d’atteinte. Les rayonnements pénétrants issus de sources externes (corps radioactifs, appareils électriques accélérant des particules) sont les contributeurs d’une irradiation externe. Les substances radioactives présentes dans l’environnement (ou dispersées dans l’environnement par l’homme) participent à la contamination interne des personnes soit par inhalation (gaz, aérosols..), soit par ingestion au travers de la chaîne alimentaire (qui conduit souvent à des processus de re-concentration des toxiques).

L’origine des expositions aux radiations ionisantes peut être naturelle (cosmique et tellurique) ou artificielle (anthropologique).
Les sources d’exposition naturelle ainsi que les estimations de dose annuelle qui leur sont actuellement attribuées [1] sont présentées dans le tableau ci-dessous. On soulignera le rôle prépondérant du radon, un gaz radioactif (émetteur alpha) issu de la chaîne de l’uranium qui contribue pour plus de 50% à l’ensemble de cette exposition naturelle et qui pourrait constituer un problème de santé publique. Le Comité BEIR de l’Académie des Sciences US a récemment évalué entre 15.400 à 21.800 le nombre de cancers du poumon dû, chaque année au sein de la population américaine, au radon domestique [2]. Toujours selon l’Académie américaine, il représenterait la deuxième cause du cancer du poumon après le tabac. Les radiations cosmiques quant à elles ont fait l’objet de multiples investigations depuis le début des années 90. Leur débit de dose, faible au niveau du sol (0,03 µSv/h),peut être 150 à 200 fois plus élevé lors de vols intercontinentaux (5 µSv/h). Certaines études [3] ont pu mettre en évidence un excès d’anomalies chromosomiques caractéristiques de l’action des radiations. De fait, les personnels navigants devraient sans doute être considérés comme « personnels exposés » aux radiations ionisantes et classés comme les salariés du nucléaire.

Sources Dose moyenne
annuelle (mSv)
Domaine de
variation (mSv)

Exposition externe :

– rayonnement cosmique

– rayonnement tellurique

0,4

0,5

0,3 – 1,0

0,3 – 0,6

Exposition interne :

– inhalation (dont radon)

– ingestion

1,2

0,3

0,2 – 10

0,2 – 0,8

Total 2,4 1 – 10
[source : UNSCEAR, 2000]

Quant aux sources d’exposition artificielle, elles relèvent soit de l’exposition médicale (environ 1,2 mSv/an mais avec un domaine de variation très large) soit d’expositions d’origine industrielle ou militaire. En affirmant le principe de justification des actes radiologiques, la mise en application de la directive européenne 97-43 [4] devrait permettre de réduire les doses médicales, en particulier par la chasse aux examens inutiles qui perdurent encore trop souvent dans un milieu où la radioprotection a rarement été un souci majeur. Les essais nucléaires nombreux (945 explosions réalisées par les USA, 210 pour la France…) ont dispersé à la surface de la planète (principalement dans l’hémisphère nord) des quantités importantes de radioactivité qui, aujourd’hui encore, marquent notre environnement. Même s’ils détiennent chacun des activités très modestes comparativement à l’industrie nucléaire, on ne peut ignorer les nombreux « détenteurs » de sources radioactives utilisées en milieu hospitalier, dans les centres de recherche ou au sein de petites entreprises. En France, ils sont environ 5000 utilisateurs autorisés à détenir des sources scellées et non scellées. Des millions de sources radioactives sont ainsi dispersées dans le monde, dont plusieurs dizaines de milliers présentent de fortes activités (exprimées en terabecquerels, TBq). Régulièrement, des pertes, vols, actes de sabotage sont enregistrés. Plus grave, le trafic de ces matières s’est intensifié au cours des années 90 (il a doublé entre 1996 et 1999). De tels actes ont été confirmés dans plus de 40 pays, et ce n’est que la partie visible de l’iceberg. Depuis le 11 septembre 2001, la menace d’actes terroristes radiologiques (les « bombes sales »..) sont prises très au sérieux, y compris par la France où une circulaire (circulaire 800) est venue renforcer le dispositif en mai 2003. Le secteur de l’industrie nucléaire, avec son talon d’Achille que constituent les déchets nucléaires [voir Les déchets nucléaires], reste cependant l’objet principal des craintes exprimées par une large fraction de la population [5]. Issu du nucléaire militaire, il faut bien reconnaître que le principe de justification ne s’est jamais appliqué au programme nucléaire dont la France a fait son cheval de bataille. L’apparition de batteries lance-missiles Crotale déployées sur le plateau de la Hague (Nord Cotentin) en réponse aux attentats du 11 septembre a souligné brutalement l’extrême fragilité des systèmes de protection existants [6]. En matière de risques externes, la dimension de tels actes n’a jamais été prise en compte.

En regard de l’équation définissant le risque – le risque est égal au produit du danger potentiel par une probabilité d’occurrence d’un événement donné et par l’intensité des conséquences sanitaires et écologiques – le discours officiel ne s’est toujours porté que sur le second terme de l’équation (la probabilité d’occurrence) qu’il convenait de maintenir le plus faible au possible. La présentation des rapports de sûreté des installations nucléaires est de ce point de vue éclairant (pour certaines installations, l’exploitant est allé jusqu’à présenter le niveau de risque de chute d’un petit avion de tourisme en « probabilité d’impact par m2 » pour souligner son caractère « négligeable »). On est aujourd’hui légitimement en droit de se demander si la société n’a pas le devoir de refuser (pour elle-même et pour les générations futures) que s’érigent des installations industrielles présentant des niveaux de danger potentiel extrêmes et cela, indépendamment des estimations probabilistes présentées. Dans une certaine mesure, cette démarche rejoint une approche très actuelle en matière de maîtrise des risques industrielles qui vise à « réduire le danger à la source ».

La radioprotection. Dans l’année même (1896) qui suivi la découverte des Rayons X (1895) les premières règles pratiques de protection sont recommandées. Dès le tout début du siècle, les dangers de rayonnements ionisants deviennent de plus en plus apparents et des comités nationaux apparaissent en 1913 dans le but de les étudier. Le premier congrès international de radiologie (1925) reconnaît la nécessité d’évaluer et de limiter l’exposition aux radiations. Pour répondre à ce besoin, le Comité International de Protection contre les Rayons X et le Radium est créé en 1928 et il deviendra (en 1950) la Commission Internationale de Protection Radiologique (CIPR). En 1934, les premières limites de dose sont instituées tout en considérant l’existence de seuils d’innocuité (reconnaissance des seuls effets déterministes). Mais en 1955, le concept de seuil est rejeté et les effets stochastiques considérés comme « irréversibles et cumulatifs » sont maintenant pris en compte. Durant les années 60 et 70, le débat autour de l’acceptabilité du risque conduira à l’élaboration du concept ALARA (maintenir les expositions à un niveau aussi faible que raisonnablement possible). Depuis, les recommandations de la CIPR conduiront à des réductions successives des limites de dose (en 1977 puis en 1990) d’abord pour les travailleurs mais aussi, et c’est nouveau, pour le public. Cette évolution est résumée dans le tableau ci-contre.

Année Travailleurs Public
1934 env. 600 mSv/an (0,2
roentgen/jour)
1938 env. 500 mSv/an (1
roentgen/semaine)
1951 env. 150 mSv/an (0,3
roentgen/semaine)
1959 (et
1977)
50 mSv/an 5 mSv/an
1990 20 mSv/an 1 mSv/an

Les travaux de la CIPR conduiront à l’élaboration de trois grands principes fondamentaux : le principe de justification (une pratique doit faire plus de bien que de mal), dont nous avons souligné le peu d’empressement à le mettre en application ; le principe d’optimisation de la radioprotection (qui s’appuie largement sur le concept ALARA) ; le principe de limitation des expositions (valeurs limites censées interdire l’apparition d’effets déterministes et limiter le plus possible l’induction d’effets stochastiques). Ces trois principes fondamentaux viennent d’être intégrés au Code de la Santé Publique pour la première fois en 2002, année qui sera marquée en France par une réorganisation importante du système de radioprotection et des dispositions réglementaires correspondantes.

Le débat autour de la radioprotection est également très animé. Il repose pour l’essentiel sur la nature de la relation dose / effet. Depuis la fin des années 80, les principales instances internationales admettent que cette relation est de type « linéaire et sans seuil ». L’enjeu est important car cela signifie que toute dose, même très faible, est susceptible de produire un effet (induction de cancers ou affection de la descendance) en terme probabiliste.
Pour autant, cette relation ne serait prouvée que dans un domaine de dose plus élevé que celui de la radioprotection (niveaux d’exposition des travailleurs ou du public) car elle est déduite presque exclusivement de l’analyse des données du suivi des survivants aux explosions nucléaires de Hiroshima et Nagasaki. La poursuite de l’étude après 1985 a permis, d’une part, d’observer que les cancers continuent à apparaître en excès plus de 40 ans après et, d’autre part, d’affiner la limite inférieure de cette relation étayée qui passe ainsi de 200 mSv à 50 mSv confortant l’hypothèse de la linéarité sans seuil.
Les modes d’exposition étant très différents entre les populations d’Hiroshima et Nagasaki (qui ont subi une dose forte et aiguë) et les populations vivant autour d’installations nucléaires (qui reçoivent des doses faibles et chroniques), le modèle de la CIPR fait l’objet de critiques fortes de la part de groupes scientifiques-citoyens [7]. De fait, au-delà des modèles toujours critiquables, de nombreuses questions restent en suspend : la susceptibilité génétique (non prise en compte dans la détermination du risque radio-induit), l’hétérogénéité dans la distribution de la dose, l’interaction avec d’autres agents toxiques de nature différente (la cancérogenèse correspond à un processus qui se déroule par étapes successives), l’induction de pathologies non cancéreuses, les maladies multi-factorielles…
A l’inverse, des partisans de l’existence d’un seuil d’innocuité (en particulier dans le sérail de l’Académie de médecine) ont fait pression sur la CIPR et les pouvoirs publics pour tenter de s’opposer à la mise en application de la réduction des limites de doses proposées par la CIPR en 1990 [8]. Là n’est d’ailleurs pas la seule inquiétude puisque ces mêmes auteurs affirment que la radioprotection « représente une activité essentiellement médicale » et qu’il « apparaît indispensable que la radioprotection soit supervisée par des médecins et autres professions de santé »… Le discours est étayé par l’existence des mécanismes de réparation des lésions de l’ADN et s’appuie sur un leitmotiv : l’absence de preuve.
Une démarche scientifique voudrait pourtant que l’on considère que l’absence de preuve d’une relation causale ne constitue pas pour autant la preuve de l’absence de cette même relation. Ainsi, il peut suffire que des développements scientifiques et technologiques permettent d’élaborer de nouveaux outils d’investigation apportant des réponses nouvelles. Et c’est peut-être ce qui est en passe d’apparaître ces dix dernières années à travers l’émergence de travaux originaux d’une part autour de l’instabilité génétique et, plus récemment, autour de l’effet bystander (ou effet non cible) [9]. Ce dernier mécanisme d’action mérite que l’on y prête attention car il remet en cause le dogme de la radiobiologie selon lequel l’induction d’effets retardés (cancers, anomalies dans la descendance) est le produit de l’action directe des radiations sur l’ADN contenu dans le noyau de la cellule. De fait, des anomalies moléculaires et cellulaires (caractéristiques de l’action des radiations) s’expriment dans des cellules non atteintes par des radiations mais simplement présentes au voisinage d’une cellule irradiée (parfois même par une seule particule alpha). De façon surprenante, ce phénomène ne semble pas s’exprimer avec des doses fortes mais uniquement dans le domaine des faibles doses (celles qui concernent la radioprotection) et les auteurs s’accordent à démontrer l’existence, à ce niveau, d’une relation dose / effet supra-linéaire suggérant que le risque radio-induit serait actuellement sous-estimé dans le domaine des faibles doses [10].
Enfin, très récemment [11], une équipe de recherche est parvenue à établir la formation de lésions radio-induites spécifiques sur l’ADN à des niveaux de doses 1000 fois inférieurs à ceux habituellement utilisés (de l’ordre du Gy) pour observer ces dégâts. Plus intéressant encore, les auteurs notent que plus ils réduisent les doses délivrées, moins ces lésions génomiques sont réparables.

Si tous ces travaux devaient se confirmer, la relation linéaire sans seuil dans le domaine des faibles doses cesserait d’être une hypothèse (issue de l’extrapolation proposée par la CIPR) pour devenir une donnée établie sur des faits expérimentaux et peut-être même sous-estimée. Beaucoup de choses seront alors à reconsidérer à commencer par les fondements même de la radioprotection.

Références :
1. UNSCEAR. Sources and effects of ionizing radiations. Vol. I, 2000.

2. National Academy of Sciences : Health Effects of Exposure to Radon: BEIR VI, Committee on Health Risks of Exposure to Radon (BEIR VI), 516 pages, 1999.

3. ROMANO Elena et al. Increase of chromosomal aberrations induced by ionizing radiations in peripheral blood lymphocytes of civil aviation pilots and crew members. Mutation Research, 9, 377, 89-93, 1997.

4. Directive 97/43 Euratom du Conseil de l’union européenne. Protection sanitaire des personnes contre les rayonnements ionisants lors d’expositions à des fins médicales. J.O.C.E., L180, 9 juillet 1997.

5. IPSN. Perception des risques et de la sécurité. Préventique – Sécurité, n° 62, mars-avril 2002.

6. La Manche Libre du 03 novembre 2002.

7. Recommendations of the ECRR (European Committee on Radiation Risk): The Health Effects of Ionising Radiation Exposure at Low Doses and Low Dose Rates for Radiation Protection Purposes: Regulators’ Edition, 2003.

8. Avis de l’Académie Nationale de Médecine. Energie nucléaire et santé. 22 juin 1999.

9. LITTLE John B. Radiation-induced genomic instability and bystander effects : implications for radiation protection. Radioprotection. 37, 3, 261-282, 2002.

10. ZHOU Hongning et al. Radiation risk to low fluences of a particles may be greater than we thought. Proceeding of National Academy of Sciences. 98, 25, 14410-14415, 2001.

11. ROTHKAMM Kai et al. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-Ray doses. Proceeding of National Academy of Sciences. A paraître en 2003.


dicodico2Autres textes du dictionnaire des risques :

Ancien lien

L’irradiation et la contamination

Fiche technique parue dans l’ACROnique du nucléaire n°62 de septembre 2003


Lorsqu’on s’intéresse aux rayonnements ionisants et à leurs conséquences sur la santé, il y a deux phénomènes que l’on doit distinguer, ce sont l’irradiation et la contamination. Si le premier est spécifique d’une atteinte extérieure de l’organisme, le second fait référence à une atteinte par voie interne. Les différences entre ces deux processus viennent, d’une part, des rayonnements mis en cause, d’autre part, du type d’effets qu’ils produisent sur l’organisme. Ce sont ces points particuliers qui vont être présentés par la suite.


L’irradiation

 

Définition

L’irradiation est la conséquence directe de l’exposition externe d’un corps (inerte ou vivant) à des rayonnements ionisants (R.I.). Réalisée de façon contrôlée, l’irradiation trouve des applications dans différents secteurs tels que l’industrie agroalimentaire (assainissement et conservation des aliments) ou encore le milieu médical (radioexpositions externes lors des radiographies). Mais lorsque les conditions d’irradiation ne sont plus maîtrisées (accident de transport de source radioactive ou accident de criticité  [1] par exemple) ce phénomène prend une autre ampleur et on le considère essentiellement par rapport à ses effets au niveau biologique et physiologique généralement dus à de fortes doses de rayonnements. Pour des doses plus faibles, de l’ordre de celles induites par l’irradiation naturelle (rayonnements cosmiques, telluriques et radioactivité interne du corps humain) d’une moyenne de 2,4 millisievert par an (2,4 mSv/an, Equivalent de dose efficace), on parle plutôt d’exposition, étant donné la difficulté à établir une relation entre ces rayonnements et d’éventuels effets sur la santé. En ce qui concerne l’utilisation médicale des rayonnements ionisants, on considère que les doses reçues font partie du rayonnement artificiel tolérable c’est à dire qui peut être justifié (dose moyenne d’irradiation due aux activités humaines : 0,9 à 1 mSv/an, dont 0,7 mSv/an dus aux radio-diagnostiques).

Quels sont les rayonnements mis en cause ?

Lors des accidents par irradiation, les rayonnements électromagnétiques (photons gamma et X) sont le plus souvent impliqués, essentiellement parce qu’ils ont une grande distance de parcours dans l’air (plusieurs centaines de mètres pour les hautes énergies). De plus, possédant un certain pouvoir de pénétration, ils peuvent traverser des matériaux qui auraient arrêté les rayonnements alpha ou bêta. Ce pouvoir de pénétration peut ainsi impliquer ces rayonnements électromagnétiques dans des irradiations plus ou moins profondes de l’organisme, en fonction de leur énergie.

Comment s’en protéger ?

La première façon de se protéger des rayonnements ionisants est de s’éloigner de la source. En ce qui concerne le rayonnement alpha et les bêta d’énergie inférieure à 65 keV (Kilo electronVolt), le risque d’irradiation externe n’existe pas car ces rayonnements ne peuvent franchir la couche cornée de la peau ; ils n’irradient ainsi aucun tissu vivant. De plus, n’ayant qu’un faible parcours dans l’air, ils sont naturellement stoppés avant d’atteindre le corps, même pour des distances source-cible de quelques centimètres. Quant aux photons gamma, ils auront une probabilité d’atteindre leur cible d’autant plus faible que celle-ci sera éloignée de la source (l’intensité du rayonnement décroît selon l’inverse du carré de la distance).

La deuxième protection consiste à placer un écran entre soi et la source. Une feuille de papier suffira pour stopper les rayonnements alpha ; les particules bêta seront absorbées par quelques millimètres de verre, de plexiglas ou d’aluminium ; le rayonnement X par quelques millimètres de plomb, mais pour les photons gamma, il est nécessaire d’interposer au moins plusieurs centimètres (voire quelques dizaines de cm) de matériaux à densité élevée (plomb, béton, uranium appauvri) afin d’atténuer efficacement le rayonnement. Un exemple de ce type de protection existe dans les services hospitaliers de radiologie dans lesquels le personnel manipulant est protégé par des tabliers et des vitres de  plomb.

Quelles peuvent être les conséquences d’une irradiation ?

Les premiers effets des rayonnements ionisants (R.I.) sur la matière vivante sont dits non stochastiques ou précoces. Ils apparaissent toujours (effets obligatoires) à partir d’une dose seuil  [2] au-delà de laquelle, la gravité de l’effet est proportionnelle à la dose. Parfois, une réversibilité est possible si les lésions ne sont pas trop importantes.
Les rayonnements électromagnétiques (X et gamma) qui sont par nature peu ionisants (c’est à dire qu’ils ne délivrent pas toute leur énergie aux cellules qu’ils rencontrent) peuvent néanmoins être à l’origine de lésions relativement importantes. Ces lésions, qui dépendent de la dose reçue, dépendent également de l’étendue de l’irradiation. Parmi les victimes, on distingue ainsi généralement celles ayant subi une irradiation localisée à dose élevée de celles ayant subi une irradiation corporelle globale.

L’irradiation localisée : elle est le plus souvent due à la « prise en main » d’une source radioactive qui, suite à un égarement, est ramassée (irradiation de la main) puis mise dans une poche (irradiation de la cuisse ou de la partie du corps la plus proche).
Le premier effet visible s’apparente à une brûlure de la peau (érythème) accompagnée de nausées, puis successivement avec l’augmentation de la dose on observe une épidermite sèche (inflammation de la peau), une épidermite exsudative (suintement pathologique), jusqu’à la nécrose des tissus pour des doses extrêmement fortes (plusieurs dizaines de grays, Gy). Si dans ce dernier cas, heureusement rare et généralement observé pour des accidents de « contact », l’amputation est parfois inévitable, les traitements les plus couramment effectués s’assimilent à ceux, classiques, des brûlures du second degré.
En ce qui concerne l’observation des premiers symptômes, le temps nécessaire à leur apparition est de quelques heures dans le cas des très fortes doses, alors qu’un retard (faussement rassurant) a lieu dans la plupart des cas.

L’irradiation corporelle globale : il peut s’agir de l’exposition accidentelle à une source radioactive, mais les cas les plus flagrants, ayant permis de mieux connaître la symptomatologie, restent l’accident de Tchernobyl et les explosions atomiques japonaises.
Les signes cliniques précurseurs que sont nausées, vomissements, céphalées, douleurs parotidiennes (glandes salivaires), sécheresse buccale et diarrhées, deviennent persistants avec des doses de plus en plus fortes (4 à 6 Gy). Pour des doses dépassant 10 Gy, le pronostic vital est généralement très réduit.
Dans le cas de doses non létales, le principal problème est d’ordre hématologique. La numération régulière de la formule sanguine permet généralement de suivre la décroissance des lymphocytes (globules blancs), suivie après plusieurs jours, de la chute des plaquettes, entre autres. Des aberrations chromosomiques peuvent également être observées par l’intermédiaire d’un caryotype réalisé à partir des lymphocytes, leur nombre étant fonction de la dose.

Cette étude des effets biologiques des R.I., appelée dosimétrie biologique, qui cherche à préciser les conditions d’irradiation (dose reçue et volume réellement irradié, notamment vis-à-vis de la protection de la moelle osseuse), constitue un examen d’autant plus important que la personne irradiée ne portait pas de dosimètre.

Les traitements appliqués pour des doses reçues ne permettant pas la réversibilité spontanée de la chute des lymphocytes par exemple sont généralement des transfusions de plaquettes ou de leucocytes  [3]. L’utilisation de facteurs de croissance hématopoïétiques peut aider au redémarrage des cellules de moelle osseuse et dans certains cas, des greffes de moelle peuvent être pratiquées.

Ceci nous amène donc à classer certains tissus en fonction de leur sensibilité vis-à-vis des rayonnements ionisants. D’une manière générale, les tissus à renouvellement rapide (divisions cellulaires nombreuses) sont les plus sensibles aux radiations et les effets produits sont alors précoces. Sont classés selon leur radiosensibilité décroissante les tissus suivants :

  • les tissus embryonnaires
  • les organes hématopoïétiques [4]
  • les gonades
  • l’épiderme
  • la muqueuse intestinale
  • le tissu conjonctif
  • le tissu musculaire
  • le tissu nerveux
+ radiosensibles
triangle
– radiosensibles

Au niveau des gonades, des stérilités temporaires ou permanentes à partir de certaines doses peuvent être observées. Chez l’embryon ou le fœtus, c’est le stade du développement qui conditionne les effets, à savoir que la radiosensibilité est maximale entre le 9ème et le 60ème jour. Les conséquences possibles sont la mort intra-utérine, l’apparition de malformations ou encore la mort néo-natale et post-natale. Passé le 60ème jour (croissance fœtale), ce sont des malformations nerveuses ou encore des cancers qui peuvent être ainsi induits.Après avoir vu les effets précoces d’une irradiation sur l’organisme, il convient de s’arrêter sur un deuxième type d’effets qui sont appelés stochastiques ou aléatoires. Ces effets se manifestent longtemps après l’irradiation (plusieurs années) et peuvent être causés soit par une irradiation aiguë soit par une exposition chronique à de faibles doses d’irradiation. Leur apparition chez un individu est d’autant moins probable que le niveau d’irradiation est faible, aussi n’apparaissent-ils pas systématiquement chez toutes les personnes irradiées.
Parmi ces effets, les cancers représentent certainement les conséquences les plus importantes de l’action des rayonnements ionisants et, dans une moindre mesure, l’apparition d’anomalies génétiques. Ces dernières résultent des lésions induites sur les chromosomes (ADN) de la lignée germinale (irradiation des gonades) pouvant entraîner des anomalies dans la descendance de l’individu irradié. Lorsque la molécule d’ADN est touchée, ceci engendre généralement des mutations qui peuvent apparaître dans les cellules-filles lors de la division cellulaire. Toutefois, il existe certains agents de protection comme les vitamines E et C, ainsi que des mécanismes de réparation de l’ADN, de même qu’il existe des systèmes de réparation cellulaire et tissulaire.En ce qui concerne le risque de développer un cancer ou d’être touché par une mutation génétique suite à une irradiation, celui-ci reste très délicat à évaluer, d’autant qu’il n’y a aucune forme de cancer spécifique des rayonnements ionisants et que l’étude de l’effet des faibles doses est loin d’être achevée.

La contamination

Définition

Comme l’irradiation, la contamination n’est pas un terme spécifique au corps humain et s’applique également à l’environnement : elle représente la présence d’une substance radioactive dans un milieu ou au contact d’une matière où elle est indésirable.
Concernant l’être humain, on parle de contamination lorsqu’un individu entre en contact direct avec une source radioactive et ce, de deux manières différentes, mais parfois simultanées :

  • par dépôt de substances radioactives (poussières) au niveau de l’épiderme ou des cheveux : c’est la contamination externe
  • par incorporation d’éléments radioactifs à l’intérieur de l’organisme : c’est la contamination interne. Les principales voies de pénétration sont :
    • la voie respiratoire
    • la voie directe par blessure
    • la voie digestive
    • la voie transcutanée

Une fois le dépôt effectué, la deuxième étape de la contamination correspond au transit du contaminant, depuis l’entrée (poumons, plaie, tube digestif) vers le sang. On comprend alors que les deux premières voies d’entrée sont les plus dangereuses et le plus souvent impliquées dans les accidents de contamination (importante vascularisation des bronchioles).
Vient ensuite l’intégration du contaminant dans le métabolisme : l’organisme va l’utiliser dans différents organes, dits critiques, de la même manière que ses homologues non radioactifs. Par exemple, la thyroïde fixe indifféremment l’iode stable ou l’iode radioactif. Parfois, c’est un autre élément qui est fixé à cause de la similitude de ses propriétés. C’est le cas du squelette qui fixe le strontium de la même manière que le calcium. On dit alors que le strontium est un mimétique du calcium. Parfois encore, il n’y a pas d’organe cible et l’élément diffuse dans tout le corps : c’est le cas du césium qui peut être fixé préférentiellement au potassium et se retrouver dans tous les muscles.

Lorsque la quantité de radionucléides incorporée est importante, on se comporte alors comme une véritable source et on émet des rayonnements sur notre entourage.

D’une manière générale, les accidents de contamination radioactive sont dus à une contamination préalable de l’environnement : habitations, sols et aliments comme dans les régions autour de Tchernobyl (Ukraine et Bélarus) ou au Brésil (Goiania-1987) où une source de radiothérapie de 50 TBq de césium 137 a été dispersée et a contaminé l’environnement et 100 000 personnes.

Irradiation interne

L’irradiation interne accompagne souvent la contamination et ce, à cause des corps radioactifs ingérés ou inhalés qui irradient de l’intérieur les organes sur lesquels ils se sont temporairement fixés. L’irradiation des tissus, qu’elle soit interne ou externe, produit le même type d’effets. En revanche, les rayonnements considérés comme les plus dangereux, ne sont plus les X et les gamma, mais les rayonnements dits particulaires. Les rayonnements particulaires (alpha et bêta) possèdent un pouvoir d’ionisation (Transfert d’Energie Linéique) plus élevé que celui des rayonnements électromagnétiques, aussi délivrent-ils de façon certaine toute leur énergie dans la matière qu’ils rencontrent et qui les arrête. En dosimétrie, la dose équivalente H (en Sievert, Sv) dépend directement de la nature du rayonnement puisque son calcul consiste en la multiplication de la dose absorbée (en Gray, Gy) par un facteur de pondération (Wr) caractéristique du rayonnement :

H(Sv) = D(Gy) * Wr

Wr est égal à 1 pour les bêta, gamma et X, alors qu’il est de 20 pour les alphas. Cela signifie que, pour une même énergie, le rayonnement  a est 20 fois plus radiotoxique que les autres.

Par exemple, dans le cas des isotopes gazeux du radon (radon 222 et radon 220), inhalés avec l’air ambiant, ce sont surtout les descendants, émetteurs alpha à vie courte (polonium 218, polonium 214 et bismuth 212), qui vont causer des dégâts aux cellules et qui peuvent, à terme, être la cause du développement d’un cancer du poumon. On estime les doses annuelles moyennes dues à l’inhalation des radon 222 et radon 220 et à leurs descendants à 60 et 10 µSv respectivement.

Conséquences

En ce qui concerne l’irradiation interne, les conséquences sont du même type que lors d’une irradiation externe, c’est-à-dire qu’il peut y avoir des effets au niveau cellulaire, tissulaire ou génétique. Ils peuvent se déclarer rapidement ou tardivement (cancérogènes), essentiellement en fonction de la dose et, mis à part dans les cas extrêmes comme à Goiania en 1987, on meurt rarement des suites d’une incorporation de radionucléides.
La différence avec l’irradiation réside dans la localisation des effets. En cas de contamination interne, il est possible de connaître la zone touchée si l’on connaît le radionucléide incorporé (fixation préférentielle). Les dégâts seront alors souvent localisés, au niveau d’un organe ou des tissus voisins. Enfin, à la différence de l’irradiation externe, souvent de courte durée, une contamination entraîne généralement une irradiation interne des tissus pendant un temps beaucoup plus long. Ce temps sera déterminé entre autres par deux facteurs : la période physique et la période biologique de l’élément incorporé (cf § suivant).

A la différence d’une source radioactive qui se trouve à distance d’un corps et contre les rayonnements de laquelle on peut se protéger, on voit qu’en cas de contamination interne, aucune protection n’est possible, puisqu’on est porteur de la source. Il existe pourtant des moyens de faire diminuer cette contamination, en éliminant directement la source qui continue d’émettre. Ces processus de décontamination n‘ont qu’une efficacité limitée, surtout devant des accidents de grande ampleur.

Décontamination

Lorsque la contamination est externe, on procède par lavages successifs de la zone touchée mais plus généralement du corps entier (douches). Si des poussières sont en cause, des adhésifs sont parfois utilisés pour récupérer les contaminants, dans les deux cas, les eaux de lavage comme les produits utilisés doivent être gérés comme des déchets radioactifs.
Lorsque la contamination est interne, le but est de faire migrer les particules radioactives vers les voies d’élimination naturelles. L’efficacité des traitements va surtout dépendre de la précocité de l’intervention mais également des propriétés du contaminant.
On sait que chaque radionucléide se désintègre au cours d’un période radioactive qui lui est propre. Beaucoup d’entre eux ont des périodes trop longues pour ne compter que sur le temps pour que l’activité disparaisse. De plus, dans le corps humain, chaque radionucléide possède une période biologique  [5]. Par la combinaison de ces deux facteurs (période physique et biologique), on peut définir la période effective, comme le temps au bout duquel la quantité de contaminant dans l’organisme est divisée par deux. Te = (Tb*Tp)/(Tb+Tp)

Te : période effective ; Tb : période biologique ; Tp : période physique.

Exemples :

période radioactive période biologique période effective
iode 131
8 jours
30 jours (thyroïde)
6,3 jours
plutonium 239
24000 ans
100 ans (os)
~100 ans

Dans le cas particulier de la médecine nucléaire où des sources de radionucléides sont injectées à des patients après l’intervention, on cherche à forcer l’élimination par les voies naturelles. Ainsi, après une scintigraphie thyroïdienne pour laquelle on aura reçu 20 MBq de Technétium 99m, il faudra boire beaucoup d’eau pour que l’élimination par les voies urinaires soit la plus rapide possible. On limitera également le temps de contact avec l’entourage, pendant lequel on peut représenter un danger, surtout auprès des enfants.Enfin, on peut noter l’existence, pour certains radionucléides particuliers, de traitements médicaux plus poussés, dont le principe est de déloger le radionucléide de l’emplacement où il s’est fixé : on nomme ceci la décorporation. On peut citer par exemple comme agent décorporant, le Bleu de Prusse, qui a été utilisé suite à l’accident de Goiania au Brésil en 1987 et qui a permis d’éliminer notablement le césium des personnes contaminées.GLOSSAIRE :

  • Activité : Nombre de transformations nucléaires spontanées qui se produisent dans une quantité d’un radionucléide pendant, un certain temps. Dans le système international, l’unité d’activité d’une source radioactive est le  becquerel (unité standard de mesure de la radioactivité équivalent à une désintégration par seconde).
  • Dose absorbée : Quantité d’énergie absorbée par la matière vivante ou inerte et par unité de masse. L’unité de dose absorbée est le gray : dose absorbée dans une masse de matière de 1 kilogramme à laquelle les rayonnements ionisants communiquent en moyenne, de façon uniforme, une énergie de 1 joule.
  • Dose efficace : Pour les besoins de la radioprotection on définit une grandeur appelée dose efficace qui essaie de tenir compte, chez l’homme, des dommages radiologiques occasionnés. Une même dose de rayonnement ne provoque pas les mêmes dommages suivant qu’il s’agit d’irradiation ou de contamination, suivant le type de rayonnement (alpha, bêta ou gamma) et enfin suivant la nature des tissus touchés. L’unité est le sievert (pour les rayonnements gamma et beta, Wr =1) ; La réglementation européenne fixe une limite annuelle d’exposition de 1mSv/an pour le public ; cette limite a été transposée en droit national en mars 2001.

[1]  Criticité : conditions dans lesquelles un système est capable d’entretenir une réaction en chaîne.
[2] 0.7 sievert délivrés en une seule fois : dose seuil au-delà de laquelle l’apparition d’un effet précoce est certaine.
[3] Leucocytes : terme général désignant les globules blancs, parmi lesquels on trouve les lymphocytes.
[4] A l’origine des cellules sanguines.
[5] Temps au bout duquel l’organisme élimine la moitié de la radioactivité incorporée.

Ancien lien

L’uranium

Fiche technique de l’ACROnique du nucléaire n°52, mars 2001.


L’uranium naturel est l’élément chimique le plus lourd que l’on trouve dans la nature ; il est constitué de trois isotopes radioactifs, l’uranium 234, l’uranium 235 et l’uranium 238 dans les proportions suivantes : 0,0055%, 0,720% et 99,2745%. L’uranium 235 est le plus fissible et présente donc un intérêt énergétique et militaire. La plupart des réacteurs nucléaires utilisent de l’uranium dit enrichi car il a une proportion d’uranium 235 plus forte que dans l’uranium naturel. Elle est de 3,5% actuellement en France et pourrait monter jusqu’à 5% dans l’avenir. Pour faire une bombe, il faut monter à un taux d’enrichissement supérieur à 90%. Les résidus de ce processus industriel, qui contiennent très peu d’uranium 235 (0,3% en moyenne) sont appelés uranium appauvri. C’est donc un sous-produit de l’industrie nucléaire disponible en très grande quantité et bon marché.

L’enrichissement est un processus complexe car tous les isotopes de l’uranium ont les mêmes propriétés chimiques : seule leur masse diffère légèrement. En France, c’est par diffusion gazeuse que se fait le tri à l’usine Eurodif de Marcoule [1] – opération très coûteuse en énergie, puisque sa consommation en électricité représente l’équivalent de la production de trois réacteurs nucléaires. L’usine alimente une centaine de réacteurs, dont environ la moitié pour l’exportation. L’uranium appauvri issu de la fabrication de ce combustible étranger reste en France. Pour mille deux cent tonnes (métal lourd) de combustible enrichi consommé par an en France, on fabrique près de 8000 tonnes d’uranium appauvri. D’où des stocks importants : plus de 210.000 tonnes en France et dix fois plus aux Etats-Unis pour la filière civile sont classées comme stocks stratégiques et non comme déchets. La conversion chimique de l’uranium après l’enrichissement n’est pas sans danger et a conduit à Tokaï-mura au Japon, en 1999, à un grave accident [2].

L’uranium appauvri qui sort de l’usine d’enrichissement n’est que très partiellement utilisé par l’industrie nucléaire, qui le mélange à du plutonium pour faire du combustible Mox. Pour le reste, les débouchés étant rares, c’est un résidu bien encombrant. Une autre source de résidu d’uranium provient du retraitement des combustibles irradiés.

Dans un réacteur nucléaire, une partie de l’uranium 235 fissionne, il libère de l’énergie et donne alors naissance à de nouveaux éléments chimiques de masse moindre appelés produits de fission. Une faible partie absorbe un neutron pour donner de l’uranium 236. L’uranium 238 fissionne plus difficilement et donne plutôt de l’uranium 239 quand il est heurté par un neutron. Ce dernier se désintègre rapidement par rayonnements bêta en neptunium 239, puis en plutonium 239. Les isotopes plus lourds de l’uranium subissent un processus similaire. La séparation de l’uranium du combustible irradié dans les usines de retraitement n’est pas parfaite et il reste des traces de nombreux autres éléments radioactifs présents dans le combustible, dont du plutonium. Bien que plus riche que l’uranium naturel, l’uranium de retraitement est refusé par l’usine Eurodif en vue d’un ré-enrichissement car trop radioactif. En France, une petite partie de la production de l’usine Cogéma de La Hague est envoyée en Russie pour fabriquer des combustibles très spéciaux destinés à des réacteurs de recherche. Sur 24.000 tonnes d’uranium de retraitement produites (dont 17.000 pour le compte de la France), moins de 10% ont été ” recyclées ” [3]. Le reste est un résidu plus toxique que l’uranium appauvri, mais la distinction entre les deux n’est pas toujours faite. Selon la loi française, l’uranium de retraitement issu des combustibles étrangers ne doit pas être stocké en France au-delà des contraintes techniques, mais à notre connaissance aucun renvoi n’a eu lieu. A Bessine dans le Limousin, la COGEMA a été autorisée à stocker 199 900 tonnes d’oxyde d’uranium appauvri ; la présence d’uranium 236 laisse penser que de l’uranium de retraitement y est aussi stocké.

La double toxicité de l’uranium

Les différents isotopes de l’uranium présents dans ces résidus de l’industrie nucléaire sont tous des émetteurs alpha avec des périodes très longues, données dans le tableau ci-dessous ; ils donnent du thorium qui est lui même radioactif… La chaîne de désintégration de l’uranium 238, le plus abondant, est donnée ci-contre. Lors de l’extraction du minerai, l’uranium est séparé de ses descendants, tous présents dans la nature. C’est surtout en cas de contamination que l’uranium est dangereux. Le rayonnement alpha peut être arrêté par une feuille de papier, il est donc facile de s’en protéger. Par contre, lors d’une contamination (ingestion ou inhalation) les tissus humains sont très affectés par l’importante énergie rayonnée. C’est aussi, comme tous les métaux lourds, un toxique chimique.

isotope U234 U235 U236 U238
période 245.500 ans 73.800.000 ans 23.420.000 ans 4.468.000.000 ans

Selon l’Organisation Mondiale de la Santé (OMS), ” les effets de l’uranium appauvri sur la santé sont complexes car ils sont liés à la forme chimique du composé qui pénètre dans l’organisme. Les effets peuvent être chimiques et/ou radiologiques. On ne dispose que d’informations limitées sur les effets sanitaires et environnementaux de l’uranium sur la santé et l’environnement. […] En ce qui concerne les effets radiologiques de l’uranium appauvri, le tableau se complique puisque la plupart des données connues concernent les effets sur la santé de l’uranium naturel ou enrichi. Les effets sur la santé dépendent des modalités (ingestion, inhalation, contact ou lésions) et du niveau d’exposition, ainsi que des caractéristiques de l’uranium appauvri (taille et solubilité des particules).” [4]

” L’organisme humain contient en moyenne 90 mg d’uranium provenant de l’absorption naturelle d’aliments, d’air et d’eau. On en trouve environ 66 % dans le squelette, 16 % dans le foie, 8 % dans les reins et 10 % dans les autres tissus.”[5] Afin de rassurer la population, il est souvent affirmé que l’uranium appauvri est environ 40% moins radioactif que l’uranium naturel que l’on trouve partout dans l’environnement. En effet, la période de l’uranium 238 étant beaucoup plus longue que celle de l’uranium 235, il se désintègre moins vite et est donc moins radioactif, mais dans la nature, on ne trouve pas de l’uranium pur. Le minerai extrait des mines françaises ne contient que 0,5% d’uranium et celui des mines canadiennes, les plus riches, entre 4 et 8%. Quant à l’écorse terrestre, elle contient en moyenne 3g d’uranium par tonne. L’uranium appauvri est donc beaucoup plus radioactif que notre environnement. Et l’uranium de retraitement, du fait de la présence d’impuretés radioactives, est encore plus radiotoxique.

L’activité massique de l’uranium 238 pur peut être aisément calculée à partir de sa période : 12.400.000 Bq/kg. Mais le thorium 234 obtenu se désintègre rapidement (24 jours de période) en protactinium 234 puis en uranium 234 (1,2 minute de période) par émissions bêta successives. L’uranium 234 a ensuite une période radioactive très longue, on peut donc estimer dans un premier temps que la chaîne s’arrête là. En fait, pour calculer l’activité de l’uranium appauvri, c’est à dire le nombre de désintégrations par seconde, il faut aussi tenir compte de ces deux descendants, ce qui donne une activité environ trois fois supérieure : 37.300.000 Bq/kg. En ajoutant la contribution des autres éléments présents, on arrive à 39.000.000 Bq/kg pour l’uranium appauvri. Pour calculer la radioactivité du site de Bessine, la Cogéma ne tient compte que de l’uranium et ignore ses descendants, évitant ainsi que le site soit classé en Installation Nucléaire de Base (INB) dont la législation est plus stricte. Ce mode de calcul a reçu la bénédiction du conseil d’Etat, malgré l’avis défavorable de la commission d’enquête publique…[6]

L’ingestion d’un gramme d’uranium 238 conduit à une dose de 0,57 mSv et l’inhalation à 99 mSv [7]. Pour le plutonium dont on trouve des traces dans l’uranium de retraitement, ces doses sont de un à trois million de fois plus élevées. L’ingestion de1,8 g d’uranium 238 par an ou l’inhalation de 0,01 g/an conduit à la limite annuelle pour la population qui est de 1 mSv par an. Dans la pratique, il faut aussi tenir compte d’autres voies d’exposition à la radioactivité du fait qu’il peut y avoir à la fois ingestion et inhalation. Ces chiffres sont donc des limites supérieures à ne pas atteindre.

Pour ce qui est de la toxicité chimique, l’OMS explique que ” l’uranium entraîne des lésions rénales chez l’animal de laboratoire et certaines études font apparaître qu’une exposition à long terme pourrait avoir des conséquences sur la fonction rénale chez l’être humain. Les lésions observées sont les suivantes : modifications nodulaires de la surface des reins, lésions de l’épithélium tubulaire et augmentation de la glycémie et de la protéinurie.”[8]

“Par ingestion orale : Le niveau de risque minimum est lié à cette ingestion par voie orale et pour une introduction de 1 µg d’uranium par kilo de poids et par jour. Autrement dit, pour un individu pesant 70 kg, le risque minimal chronique correspond à une dose de 26 mg par an (ATSDR 1977)[9]. Zamora 1998 [10] a présenté une étude sur les effets chimiques induits par une ingestion chronique d’uranium appauvri dans l’eau de boisson. Ce groupe humain a bu de l’eau contenant de l’uranium appauvri à la dose de 2 à 781 µg/litre (ce qui correspond à une dose comprise entre 0.004 et 9 µg/kg de poids et par jour ). Sa conclusion est: “ces investigations sont en faveur, à condition qu’il s’agisse d’une période chronique importante d’ingestion d’uranium, d’une interférence sur la jonction rénale”.

Par inhalation : Stokinger et al en 1953 [11] ont étudié les inhalations chroniques d’uranium appauvri sur des chiens. Cela a montré qu’une concentration d’uranium de 0.15 mg/m3 dans l’air ne produit pas d’effet observable. C’est à partir de cette expérimentation que l’on a déduit ce que l’on appelle le risque minimal par inhalation chez les humains et qui a été estimé à 1 µg/m3 et à partir duquel on a fait dériver dans un premier temps toutes les valeurs minimales acceptables en ce qui concerne ce radiotoxique.”[12]

 


Liens

Sur notre site :

Renseignements techniques sur d’autres sites :


[1] A l’origine, l’un des actionnaires de l’usine d’enrichissement Eurodif de Marcoule était l’Iran du Chah, ce qui n’a pas été sans poser de problème quand le pays est passé sous la coupe des Ayatollahs. Le contentieux entre les deux pays a duré de nombreuses années et serait à l’origine d’enlèvements de Français au Liban et de la vague d’attentats à Paris dans les années 1985-1986. Il est difficile de croire que seul un problème financier ait bloqué la résolution du conflit, il est fort probable que la France s’était engagée à fournir de l’uranium suffisamment enrichi pour avoir un intérêt militaire. Elle aurait finalement cédé… Sur cette affaire, voir Dominique Lorentz, Une guerre, mai 1997, et Affaires atomiques, février 2001, édition des Arènes.

[2] ” Tokaïmura : un grave accident qui devait arriver “, l’ACROnique du nucléaire n°47, décembre 1999.

[3] X. Coeytaux, ” Recyclage des matières nucléaires, mythes et réalités “, WISE-Paris, avril 2000.

[4] OMS, Aide-Mémoire N° 257, janvier 2001.

[5] Ibidem

[6] B. et R. Belbéoch, janvier 2001. (ici) Une revue de presse est aussi disponible ici.

[7] Ces chiffres ont été calculés à partir des coefficients de dose pour l’adulte de l’uranium 238 (4,5E-8 Sv/Bq pour l’ingestion et 8E-6Sv/Bq pour l’inhalation) donnés par la directive européenne EURATOM 96/29 publiée au JOCE N° L159 du 29 juin 1996. Pour l’inhalation, ce coefficient dépend de la propention de l’uranium à être éliminé et donc de sa forme chimique. Nous avons retenu ici le coefficient qui correspond aux formes oxydées des poussières produites par les armes. C’est aussi le coefficient le plus pessimiste.

[8] OMS, Aide-Mémoire N° 257, janvier 2001.

[9] ATSDR 1997: US agency for toxic substances and disease registry, toxicological profile for uranium draft for public comment, p350, septembre 1997

[10] Zamora ML Tracy, BL Zieltnski, JM Meyerhof, DP Moss MA Chronic ingestion of uranium in drinking water toxicological sciences, 43, n°1, p68/77, mai 1998.

[11] Stokinger et al 1 953 in Jacob 1 997 Umweltbundesamt texte 43/97 Berlin lO-Henge -Napoli MH, Ansburlo E, Chazel V et al: Interaction uranium-cellule cible, exemple de la transformation de particules d’U04 dans le macrophage alvéolaire – Radioprotection, 32, n°5, p625/636 1997

[12] Dr. A. Behar, Association des Médecins Français pour la Prévention de la Guerre Nucléaire, extrait de Médecine et Guerre nucléaire volume 4 n° 4 (1999) (article)

Ancien lien

Les associations face aux violations du droit de l’environnement : quelques repères pour des actions efficaces

Fiche technique parue dans l’ACROnique du nucléaire n°48, mars 2000


La France est un Etat de droit, membre de la Communauté européenne. Le citoyen dispose de différentes voies díaction pour défendre ses droits issus de la législation nationale ou communautaire. Face à ce dédale, il est possible de distinguer les procédures qui permettent aux particuliers ou aux associations d’informer les autorités publiques de l’existence d’irrégularités (A) et les actions en justice proprement dites (B). Donnons quelques exemples :

A) Les voies d’action non-contentieuses

Souvent mal connues, ces procédures présentent l’avantage d’être peu formalistes, gratuites et de constituer des moyens de pression qui peuvent s’avérer efficaces, tout particulièrement au niveau européen.

1. Au niveau européen

Il est toujours possible d’adresser un dossier aux députés européens pour les sensibiliser sur tel ou tel problème. Il convient de connaître les commissions parlementaires dans lesquelles ils siègent pour cibler au mieux les envois. (Parlement européen, Rue Wierter B1049 Bruxelles, Belgique).

Il existe également des procédures clairement prévues par le droit communautaire.

a) La pétition au Parlement européen

“Tout citoyen de l’Union a le droit de Pétition au Parlement européen (article 21 du traité instituant la Communauté européenne)”. La pétition doit porter sur un domaine d’action de la Communauté et mettre en évidence une violation du droit communautaire.

Cette pétition est rédigée par une association ou un individu, sous la forme qui lui semble la plus appropriée (libre de forme). Il ne faut pas se méprendre sur le sens du mot pétition. Une seule signature suffit. Ce qui compte, c’est la qualité des arguments : “La directive européenne xxx dit que Sa transposition en droit français dit que Nous constatons que” La pétition devra uniquement permettre d’identifier le pétitionnaire et être signée sous peine d’irrecevabilité. Il est cependant possible de demander que le dépôt de la pétition reste confidentiel.

La commission des pétitions examine la recevabilité de la demande et peut faire des propositions, voire même demander à la Commission européenne d’entreprendre une enquête sur les violations dénoncées. La pétition est à adresser au Bureau des pétitions du Parlement Européen, rue Belliard,97-113, B-1047 Bruxelles, Belgique

b) Le recours au médiateur

“Tout citoyen de l’Union peut s’adresser au médiateur, conformément aux dispositions de l’article 21 du traité instituant la Communauté européenne”. Le médiateur intervient à la suite d’une requête d’une association ou d’un particulier, quand l’action des institutions communautaires a été insuffisante ou défaillante, par exemple absence ou refus d’information, irrégularités ou omissions administratives. Le recours est libre de forme, il doit simplement être signé. Le requérant peut, là aussi, demander la confidentialité. Les requêtes sont à adresser à Monsieur le Médiateur Européen, 1 avenue du Président Robert Schuman, BP 403, 67001 Strasbourg cedex.

c) La plainte à la Commission européenne

Tout citoyen ressortissant de l’Union européenne peut déposer une plainte pour informer la Commission européenne de l’absence ou de la mauvaise application du droit communautaire dans un état membre. Si la Commission donne suite à la plainte, elle peut engager des poursuites contre l’Etat membre fautif. La Commission doit, en effet, s’assurer qu’il n’y a pas infraction à la législation européenne dans les différents états de la Communauté. L’Etat en cause peut être condamné à la suite d’une procédure devant la Cour de justice. La plainte est à adresser au Secrétariat Général de la Commission Européenne, rue de la loi, 200 B-1049 Bruxelles, Belgique

d) En conclusion

Ces trois actions sont faciles et peu formalistes. Elles valent la peine d’être entreprises. Ces procédures sont, de plus, gratuites (juste le prix des timbres), et durent environ un an. Pour augmenter les chances de succès, il est recommandé de se mettre en relation avec un député européen qui pourra surveiller le bon déroulement de la procédure. Enfin, il faut ajouter que les fonctionnaires européens sont souvent très accessibles et qu’il ne faut pas hésiter à les contacter. Vous pouvez trouver des informations utiles sur toutes les institutions communautaires, la législation en vigueur, les textes en discussion au parlement et bien d’autres choses sur le serveur de l’Union européenne : http://europa.eu.int./

2. En France

Il est également possible

  • de saisir le médiateur de la République,
  • d’informer les autorités administratives des dysfonctionnements constatés,
  • d’introduire un recours gracieux devant l’autorité administrative qui a adopté un acte,
  • de faire un recours hiérarchique auprès du supérieur de líauteur de líacte contesté.

Là également ces procédures sont autant de moyens díinformation et de pression susceptibles, parfois, de contribuer à débloquer des situations tendues ou d’incompréhension.

B) Actions en justice proprement dites

Un des grands principes de la justice en France est le principe de gratuité (on ne paie pas les juges). Il peut y avoir des droits de timbres. En revanche, les auxiliaires de justice (avocats, avoués devant la Cour d’appel, etc…) sont payés par les requérants.

Limitons-nous à préciser ce qu’il faut entendre par “se constituer partie civile”. Cette démarche, en effet, est peu coûteuse car il n’est pas obligatoire d’être représenté par un avocat.

Se porter partie civile devant la juridiction pénale en cas d’atteinte au droit de l’environnement

Les associations peuvent déposer une plainte auprès du doyen des juges d’instruction, accompagnée d’une demande expresse de constitution de partie civile et réclamer des dommages et intérêts. Les règles de forme sont souples, mais la plainte ne peut pas être anonyme.

Se porter partie civile présente deux intérêts :

  • d’une part, cela permet d’avoir accès au dossier d’instruction (mais seulement par l’intermédiaire d’un avocat), l’association devenant en effet partie au procès du fait de sa constitution de partie civile. Elle peut ainsi être entendue par le juge d’instruction.
  • d’autre part, cela interdit au parquet de classer la plainte sans suite et l’oblige à faire instruire l’affaire. Une restriction cependant, il faut que la constitution de partie civile soit jugée recevable.

Quelles sont les associations susceptibles d’agir ?

En principe, ce sont les associations agréées de protection de l’environnement (voir encadré). La loi leur reconnait le droit de se constituer partie civile pour les faits portant un préjudice direct ou indirect aux intérêts collectifs qu’elles ont pour objet de défendre et constituant une infraction aux dispositions législatives relatives à la protection de la nature et de l’environnement, à l’amélioration du cadre de vie, à la protection de l’eau, de l’air, des sols, des sites et paysages, à l’urbanisme ou ayant pour objet la lutte contre les pollutions et nuisances.

Si l’association n’est pas agréée, tout n’est pas perdu : elle peut demander réparation du préjudice direct qu’elle a subi. L’expérience montre que les décisions sont de plus en plus souvent favorables aux associations.

Les conséquences de la procédure

La procédure engagée permettra, à la suite de la condamnation pénale de l’auteur de la violation du droit de l’environnement, au même tribunal de statuer sur la demande en dommages et intérêts de l’association et ainsi de l’indemniser.

En revanche, en cas de relaxe de la personne poursuivie, la juridiction pénale ne peut pas statuer sur la demande en réparation. L’association devra alors s’adresser au juge civil (tribunal d’instance ou de grande instance) s’il y a eu un préjudice direct.

Le coût de la procédure

Une association qui dépose une plainte avec constitution de partie civile peut se voir réclamer le dépôt d’une consignation qui peut atteindre plusieurs milliers de Francs, liée aux éventuels frais à payer à l’issue d’une procédure. Elle en est dispensée si elle a obtenu le bénéfice de l’aide juridictionnelle (voir encadré) ou en cas de ressources insuffisantes.

Le recours au Tribunal Administratif

Fiche technique parue dans l’ACROnique du nucléaire n°49, juin 2000


Les atteintes à l’environnement peuvent être le fait de particuliers ou d’entreprise à líencontre desquels les actions peuvent être engagées devant les tribunaux judiciaires, mais elles peuvent aussi avoir pour origine l’action ou l’inaction de l’administration. Ainsi les décisions prises par un préfet ou un maire peuvent être contestées devant le tribunal administratif (TA).

Le recours en annulation (ou recours pour excès de pouvoir)

Il s’agit de demander au TA d’annuler totalement ou partiellement un acte administratif dont on conteste la légalité.
Conditions à respecter pour que le recours soit recevable :

  • Il doit être déposé dans un délai de deux mois à compter de la publication de l’arrêté contesté (affichage en mairie ou sur le terrain, avis dans les annonces légales des journaux)
  • Il faut que l’acte en cause fasse grief à l’auteur du recours. Ainsi le tribunal rejettera le recours contre un arrêté d’ouverture d’enquête publique car ce n’est qu’une mesure préparatoire (donc qui ne fait pas grief). De même, un recours contre l’avis d’un commissaire-enquêteur est irrecevable car ce n’est qu’un avis, ce n’est pas une décision administrative.
  • Il faut que le requérant ait un ” intérêt à agir “, c’est-à-dire que la personne ou l’association qui attaque l’acte administratif soit directement concernée par l’illégalité dont elle demande l’annulation. Exemple : l’ACRO ne peut pas demander l’annulation du permis de construire d’un immeuble à Paris car cela n’a rien à voir avec son objet social et ne fait pas d’ombre à ses bureaux !

Comment présenter le recours au tribunal

  • L’avocat n’est pas obligatoire.
  • La requête (ou mémoire) est rédigée sur papier libre ; elle doit comporter les nom et adresse de son auteur et être signée.
  • Il faut y coller un timbre fiscal de 100F.
  • Il faut préciser quel est l’acte administratif attaqué et joindre une copie.
  • Il faut exposer les raisons juridiques pour lesquelles on considère que la décision est illégale : une formalité prévue par la loi n’a pas été respectée avant la signature de l’arrêté, le fonctionnaire qui a signé l’arrêté n’avait pas reçu délégation de signature du préfet, l’autorisation accordée est contraire à une loi ou un décret, etc

Comment se déroule la procédure

  • Elle est essentiellement écrite : les échanges d’arguments se font uniquement par le biais des mémoires.
  • L’audience est publique, mais il n’est pas obligatoire d’y assister.
  • Le juge rapporteur expose l’affaire. Le commissaire du gouvernement (il n’est pas le représentant du gouvernement ou de l’administration) propose au tribunal, en toute indépendance, la solution qui lui paraît correcte.
  • Les parties présentes doivent se contenter de dire qu’elles s’en tiennent à leurs dépositions écrites ; les plaidoiries et les effets de manche d’avocat sont inutiles !
  • Après délibéré, le tribunal, qui n’est pas obligé de suivre les conclusions du commissaire du gouvernement, prononcera l’annulation totale ou partielle de l’acte attaqué ou rejettera la requête.
  • Le juge ne peut pas substituer un autre acte à celui qu’il a annulé ; il ne peut pas accorder une autorisation à la place de l’autorité administrative compétente.

Le dépôt d’un recours en annulation n’est pas suspensif c’est-à-dire que le bénéficiaire de l’autorisation par exemple peut entreprendre les travaux ou l’exploitation de son usine malgré ce recours. Pour pallier cet inconvénient, il est possible de demander au TA un sursis à exécution.

La demande de sursis à exécution

C’est une procédure d’urgence. Si le sursis à exécution est accordé par le juge, la décision attaquée est provisoirement suspendue jusqu’à ce que le TA se prononce sur le recours en annulation.

Conditions à remplir :

  • La demande de sursis à exécution doit obligatoirement être accompagnée d’un recours en annulation.
  • Pour obtenir le sursis, deux conditions doivent être réunies : il faut démontrer que l’exécution de l’acte attaqué aurait des conséquences difficilement réparables et il doit y avoir des moyens sérieux de nature à justifier l’annulation.

Le recours au tribunal administratif est une procédure très accessible pour les particuliers et les associations car peu formaliste et peu coûteuse. Précisons que le recours en annulation d’un décret ou d’un arrêté ministériel doit être déposé directement auprès du Conseil d’Etat. L’intervention d’un avocat est obligatoire.

Pour connaître toutes les subtilités de la justice administrative et avoir des exemples de recours, nous vous conseillons un petit livre très bien fait : ” la justice administrative en pratique “, la documentation française, 29 quai Voltaire 75344 Paris cedex 07 : 50F.

Ancien lien

Notions de base de radioactivité

Notions de base de radioactivité (extrait de l’ACROnique du nucléaire n°37, juin 1997)

L’atome

Toute la matière qui nous entoure est constituée d’atomes, élément de base de petite taille (de l’ordre de l’Angström ou 0,000 000 000 1 m) qui permet de construire notre univers. On compte 92 atomes naturels ayant chacun des propriétés qui leurs sont propres. Ces atomes peuvent se combiner entre eux, reliés par les liaisons chimiques de diverses natures.

noyau

Chaque atome est constitué d’un noyau autour duquel il y a un nuage d’électrons. Le noyau est chargé positivement et les électrons négativement, de façon à ce que l’ensemble soit neutre. Le noyau est environ 100.000 fois plus petit que l’atome et regroupe pratiquement toute la masse. C’est le cortège d’électrons qui va donner à l’atome ses propriétés chimiques, à savoir sa capacité à se lier à d’autres atomes pour former des structures complexes. On a l’habitude de dire que les électrons “gravitent” autour du noyau, il s’agit là d’une image qui a ses limites. Une description précise nécessite la mécanique quantique.

Chaque atome peut être caractérisé par son nombre d’électrons et à chaque nombre, on associe un nom. Ainsi un atome avec un noyau possédant une charge positive et autour duquel il y a un électron est appelé hydrogène et est représenté par le symbole H. Pour deux charges, il s’agit de l’hélium (He) et ainsi de suite jusqu’à l’uranium, qui a 92 charges. Au-delà, il existe d’autres atomes qui ont été créés par l’homme et que l’on nomme artificiel. Le plutonium, avec 94 charges, en est un exemple.

Il y a donc une correspondance entre le nombre de charges et les propriétés des atomes. L’hydrogène a tendance à pouvoir se lier avec l’oxygène pour former de l’eau, alors que l’hélium ne se lie pas avec d’autres atomes.

Si on arrache un ou plusieurs électrons à un atome ou si on lui en rajoute, on obtient un corps chargé positivement ou négativement, suivant le cas. On l’appelle alors un ion. Ses propriétés chimiques sont modifiées.

Le noyau

Le noyau possède un nombre donné de charges positives qui permet de lui donner le nom de l’atome correspondant. Les particules qui donnent la charge au noyau sont appelées proton. Chaque proton porte une charge positive élémentaire. Le noyau d’hydrogène est constitué d’un proton, celui d’hélium, de deux protons… A ces particules, s’ajoutent des particules neutres appelées neutrons.

Ensembles, les protons et les neutrons, de masse et taille semblables, forment la masse du noyau. On appelle nucléons, les particules du noyau, qui peuvent être indifféremment un proton ou un neutron. Un noyau est donc caractérisé par deux nombres, le nombre de protons, appelé généralement Z et le nombre total de nucléons appelé A. Z donne donc le nombre de charges et donc permet d’identifier l’atome correspondant. Deux noyaux qui ont le même nombre de charges et qui correspondent donc au même atome, mais qui ont un nombre de nucléons (et donc de neutrons) différents, sont appelés isotopes.

Exemple : un atome constitué de 6 électrons et donc 6 protons (Z=6) est appelé carbone. Mais on trouve dans la nature, du carbone ayant 6 ou 8 neutrons, ce qui fait un nombre total de 12 ou 14 nucléons (A=12 ou 14). Si on veut préciser de quel isotope on veut parler, on dira carbone 12 (noté  12C) ou carbone 14 (noté  14C).

Dans la nature, le nombre de neutrons est généralement au moins égal au nombre de protons. Il est possible de fabriquer des noyaux trop riches ou déficients en neutrons, qui vont se désintégrer en un autre noyau. Cette désintégration s’accompagne d’un rayonnement, on parle donc alors de noyau, isotope ou élément radioactif. Si le noyau ne se désintègre pas spontanément, on parle d’élément stable.

Les protons et les neutrons sont eux aussi constitués d’une structure interne, ils sont constitués de quarks. Mais nous arrêterons là pour la description de l’infiniment petit.

La radioactivité

La radioactivité accompagne une transformation du noyau de l’atome. Avant la transformation, on parle de noyau père, après, de noyau fils. Il peut y avoir plusieurs transformations successives avant d’arriver à un noyau stable. On parle alors de chaîne de désintégration. Lors d’un désintégration, il y a émission d’un ou plusieurs types de rayonnements.

On observe trois types de rayonnements émis :

Rayonnement alpha :

alphaC’est une particule composée de deux protons et de deux neutrons extrêmement liés entre eux (noyau d’hélium) et animée d’une grande vitesse. L’émission alpha (α) ne concerne que les noyaux lourds présentant un excès de protons (en général A>200). Le noyau fils possède donc deux protons et deux neutrons en moins. Exemple, la désintégration du radium en radon :
226Ra -> 222Rn +α
Le rayonnement alpha étant constitué d’une particule lourde, il est très peu pénétrant, une simple feuille de papier peut l’arrêter.

betaRayonnement bêta :

C’est une particule, électron (β-) ou positron (β+), animée d’une grande vitesse. Il accompagne la transformation d’un neutron en proton (β-), ou d’un proton en neutron (β+). Exemple, la désintégration du tritium en hélium :  3H -> 3He + β. L’électron ou le positron étant des particules légères, le rayonnement β est beaucoup plus pénétrant. Comme les particules sont chargées, elles interagissent facilement avec la matière. Il faut une feuille métallique de quelques cm d’épaisseur pour arrêter ce rayonnement.

Rayonnement gammA :

C’est un rayonnement électromagnétique analogue à celui de la lumière mais beaucoup plus énergétique. On parle de photons gamma (γ). Leur émission suit généralement une désintégration alpha ou bêta et correspond à un réarrangement des nucléons à l’intérieur du noyau fraichement transformé.gamma

Le photon étant une particule sans masse, elle est très pénétrante et n’étant pas chargée, elle interagit peu avec la matière. Il faut une épaisseur de béton de plusieurs dizaines de cm pour l’atténuer.

La désintégration des noyaux suit une loi exponentielle décroissante en fonction du temps. Au bout d’un certain temps, appelé période ou demi-vie (T1/2), la quantité d’un radio-élément donné est divisée par deux. Au bout de deux période, il n’en restera plus d’un quart, après trois périodes, un huitième, après 10 périodes, un millième… Sachant que les périodes observées en fonction des atomes étudiés vont de temps infiniment cours aux millions d’années, c’est une grandeur indispensable pour appréhender les problèmes de radioactivité.

periode

L’activité d’un radioélément correspond au nombre de noyaux qui se désintègrent par unité de temps. L’unité de mesure est le becquerel (Bq) et correspond à une désintégration par seconde. L’ancienne unité est le curie (Ci). Un curie correspond à l’activité d’un gramme de radium et vaut 37 000 000 000 Bq.

Effets des rayonnements sur la matière et sur l’Homme

Les effets des rayonnements sur la matière sont très compliqués car ils dépendent du rayonnement étudié et du matériau concerné. Comme il est impossible de formaliser ces interactions rayonnement-matière au cas par cas, on étudie généralement l’énergie déposée dans le matériau pour quantifier. On parle alors de dose absorbée. On défini donc le gray (Gy) comme une unité d’énergie (joule) déposée par kilogramme de matière : 1Gy = 1J/kg. Plus l’énergie déposée est grande, plus le rayonnement a interagi avec la matière. Le rad correspond à l’ancienne unité : 1 Gy = 100 rad.

Quand la matière sous rayonnement est composée de tissus humains, on essaye de tenir compte de la nature du rayonnement en fonction des dommages probables qu’il peut créer. On affecte un coefficient multiplicatif WR qui dépend de la nature du rayonnement et qui tient compte de la différence irradiation/contamination. Par exemple, dans le cas d’une contamination, WR est choisi égal à 1 pour les rayonnements gamma et à 10 pour les rayonnements alpha. On parle alors d’équivalent de dose absorbée et l’unité est le sievert (Sv) : 1Sv = 1Gy*k. L’ancienne unité était le rem : 1Sv = 100rem.

Ensuite, pour considérer le détriment global des rayonnements sur le corps entier, on pondère à nouveau par un second facteur (WT) prenant en compte la sensibilité du ou des tissu(s) ou organe(s) touché(s). On parle alors de dose efficace ; son unité de mesure est également le sievert (Sv).

Pour en savoir plus sur le sujet, nous vous renvoyons au dossier que nous avons déjà consacré aux rayonnements et la santé (numéros de l’ACROnique du nucléaire).

Il est clair que la mesure directe de la dose ou de l’équivalent de dose est très difficile. On a donc recours à des approximations.

Récapitulatif des grandeurs et unités

GRANDEURS UNITES EQUIVALENCES DEFINITIONS
L’ACTIVITE
Becquerel
(Bq) 


Curie

(Ci)

1 Bq = 27.10-12 Ci  =  27 pCi
1 Ci = 37 109 Bq
Connaître l’activité d’une matière
radioactive revient à déterminer le nombre de radionucléides
de la dite substance qui ce désintègre par unité de
temps. 


L’ancienne unité était le Curie (symbole
Ci) c’est à dire le nombre de désintégration par seconde
dans un gramme de radium 226, soit 37 milliards.

DOSE ABSORBE
Gray
(Gy)


Rad

(rad)

Gy = 1 joule / kg
= 100 rad


1 rad = 0,01 Gy

 

 

Quantité d’énergie absorbée par
la matière vivante ou inerte et par unité de masse. La conversion
du Bq au Gy n’est pas directe car la désintégration d’un
atome de césium ou d’iode ne libère pas la même énergie
et tous les rayonnements ne sont pas forcément absorbés.


L’ancienne unité était le Rad

 DOSE EQUIVALENTEDOSE EFFICACE
Sievert
(Sv)


 

 

 

 

 

 

 

 

 

Rem

(rem)

1 Sv = Gray * k
= 100 rems


 

 

 

 

 

 

 

 

 

 

 

1 rem = 0,01 Sv

 

 

La dose équivalente essaye de tenir compte chez
l’homme des dommages radiologiques occasionnés. Une même dose
de rayonnement ne provoque pas les mêmes dommages, suivant qu’il
s’agit d’irradiation ou de contamination, de rayonnement alpha, bêta ou gamma et suivant la nature des tissus touchés. Pour exprimer ces différences d’effets biologiques, des coefficients sont
affectés par le législateur aux rayonnements puis en fonction des tissus touchés (dose efficace). Par exemple,
en contamination, la dose en gray est multipliée par 1 s’il s’agit
de rayons gamma.


L’ancienne unité était le Rem


Lire aussi

Tables et caractéristiques des éléments

Ancien lien

Page 1 sur 212