Fiche technique parue dans l’ACROnique du nucléaire n°62 de septembre 2003
Lorsqu’on s’intéresse aux rayonnements ionisants et à leurs conséquences sur la santé, il y a deux phénomènes que l’on doit distinguer, ce sont l’irradiation et la contamination. Si le premier est spécifique d’une atteinte extérieure de l’organisme, le second fait référence à une atteinte par voie interne. Les différences entre ces deux processus viennent, d’une part, des rayonnements mis en cause, d’autre part, du type d’effets qu’ils produisent sur l’organisme. Ce sont ces points particuliers qui vont être présentés par la suite.
L’irradiation
Définition
L’irradiation est la conséquence directe de l’exposition externe d’un corps (inerte ou vivant) à des rayonnements ionisants (R.I.). Réalisée de façon contrôlée, l’irradiation trouve des applications dans différents secteurs tels que l’industrie agroalimentaire (assainissement et conservation des aliments) ou encore le milieu médical (radioexpositions externes lors des radiographies). Mais lorsque les conditions d’irradiation ne sont plus maîtrisées (accident de transport de source radioactive ou accident de criticité [1] par exemple) ce phénomène prend une autre ampleur et on le considère essentiellement par rapport à ses effets au niveau biologique et physiologique généralement dus à de fortes doses de rayonnements. Pour des doses plus faibles, de l’ordre de celles induites par l’irradiation naturelle (rayonnements cosmiques, telluriques et radioactivité interne du corps humain) d’une moyenne de 2,4 millisievert par an (2,4 mSv/an, Equivalent de dose efficace), on parle plutôt d’exposition, étant donné la difficulté à établir une relation entre ces rayonnements et d’éventuels effets sur la santé. En ce qui concerne l’utilisation médicale des rayonnements ionisants, on considère que les doses reçues font partie du rayonnement artificiel tolérable c’est à dire qui peut être justifié (dose moyenne d’irradiation due aux activités humaines : 0,9 à 1 mSv/an, dont 0,7 mSv/an dus aux radio-diagnostiques).
Quels sont les rayonnements mis en cause ?
Lors des accidents par irradiation, les rayonnements électromagnétiques (photons gamma et X) sont le plus souvent impliqués, essentiellement parce qu’ils ont une grande distance de parcours dans l’air (plusieurs centaines de mètres pour les hautes énergies). De plus, possédant un certain pouvoir de pénétration, ils peuvent traverser des matériaux qui auraient arrêté les rayonnements alpha ou bêta. Ce pouvoir de pénétration peut ainsi impliquer ces rayonnements électromagnétiques dans des irradiations plus ou moins profondes de l’organisme, en fonction de leur énergie.
Comment s’en protéger ?
La première façon de se protéger des rayonnements ionisants est de s’éloigner de la source. En ce qui concerne le rayonnement alpha et les bêta d’énergie inférieure à 65 keV (Kilo electronVolt), le risque d’irradiation externe n’existe pas car ces rayonnements ne peuvent franchir la couche cornée de la peau ; ils n’irradient ainsi aucun tissu vivant. De plus, n’ayant qu’un faible parcours dans l’air, ils sont naturellement stoppés avant d’atteindre le corps, même pour des distances source-cible de quelques centimètres. Quant aux photons gamma, ils auront une probabilité d’atteindre leur cible d’autant plus faible que celle-ci sera éloignée de la source (l’intensité du rayonnement décroît selon l’inverse du carré de la distance).
La deuxième protection consiste à placer un écran entre soi et la source. Une feuille de papier suffira pour stopper les rayonnements alpha ; les particules bêta seront absorbées par quelques millimètres de verre, de plexiglas ou d’aluminium ; le rayonnement X par quelques millimètres de plomb, mais pour les photons gamma, il est nécessaire d’interposer au moins plusieurs centimètres (voire quelques dizaines de cm) de matériaux à densité élevée (plomb, béton, uranium appauvri) afin d’atténuer efficacement le rayonnement. Un exemple de ce type de protection existe dans les services hospitaliers de radiologie dans lesquels le personnel manipulant est protégé par des tabliers et des vitres de plomb.
Quelles peuvent être les conséquences d’une irradiation ?
Les premiers effets des rayonnements ionisants (R.I.) sur la matière vivante sont dits non stochastiques ou précoces. Ils apparaissent toujours (effets obligatoires) à partir d’une dose seuil [2] au-delà de laquelle, la gravité de l’effet est proportionnelle à la dose. Parfois, une réversibilité est possible si les lésions ne sont pas trop importantes.
Les rayonnements électromagnétiques (X et gamma) qui sont par nature peu ionisants (c’est à dire qu’ils ne délivrent pas toute leur énergie aux cellules qu’ils rencontrent) peuvent néanmoins être à l’origine de lésions relativement importantes. Ces lésions, qui dépendent de la dose reçue, dépendent également de l’étendue de l’irradiation. Parmi les victimes, on distingue ainsi généralement celles ayant subi une irradiation localisée à dose élevée de celles ayant subi une irradiation corporelle globale.
L’irradiation localisée : elle est le plus souvent due à la « prise en main » d’une source radioactive qui, suite à un égarement, est ramassée (irradiation de la main) puis mise dans une poche (irradiation de la cuisse ou de la partie du corps la plus proche).
Le premier effet visible s’apparente à une brûlure de la peau (érythème) accompagnée de nausées, puis successivement avec l’augmentation de la dose on observe une épidermite sèche (inflammation de la peau), une épidermite exsudative (suintement pathologique), jusqu’à la nécrose des tissus pour des doses extrêmement fortes (plusieurs dizaines de grays, Gy). Si dans ce dernier cas, heureusement rare et généralement observé pour des accidents de « contact », l’amputation est parfois inévitable, les traitements les plus couramment effectués s’assimilent à ceux, classiques, des brûlures du second degré.
En ce qui concerne l’observation des premiers symptômes, le temps nécessaire à leur apparition est de quelques heures dans le cas des très fortes doses, alors qu’un retard (faussement rassurant) a lieu dans la plupart des cas.
L’irradiation corporelle globale : il peut s’agir de l’exposition accidentelle à une source radioactive, mais les cas les plus flagrants, ayant permis de mieux connaître la symptomatologie, restent l’accident de Tchernobyl et les explosions atomiques japonaises.
Les signes cliniques précurseurs que sont nausées, vomissements, céphalées, douleurs parotidiennes (glandes salivaires), sécheresse buccale et diarrhées, deviennent persistants avec des doses de plus en plus fortes (4 à 6 Gy). Pour des doses dépassant 10 Gy, le pronostic vital est généralement très réduit.
Dans le cas de doses non létales, le principal problème est d’ordre hématologique. La numération régulière de la formule sanguine permet généralement de suivre la décroissance des lymphocytes (globules blancs), suivie après plusieurs jours, de la chute des plaquettes, entre autres. Des aberrations chromosomiques peuvent également être observées par l’intermédiaire d’un caryotype réalisé à partir des lymphocytes, leur nombre étant fonction de la dose.
Cette étude des effets biologiques des R.I., appelée dosimétrie biologique, qui cherche à préciser les conditions d’irradiation (dose reçue et volume réellement irradié, notamment vis-à-vis de la protection de la moelle osseuse), constitue un examen d’autant plus important que la personne irradiée ne portait pas de dosimètre.
Les traitements appliqués pour des doses reçues ne permettant pas la réversibilité spontanée de la chute des lymphocytes par exemple sont généralement des transfusions de plaquettes ou de leucocytes [3]. L’utilisation de facteurs de croissance hématopoïétiques peut aider au redémarrage des cellules de moelle osseuse et dans certains cas, des greffes de moelle peuvent être pratiquées.
Ceci nous amène donc à classer certains tissus en fonction de leur sensibilité vis-à-vis des rayonnements ionisants. D’une manière générale, les tissus à renouvellement rapide (divisions cellulaires nombreuses) sont les plus sensibles aux radiations et les effets produits sont alors précoces. Sont classés selon leur radiosensibilité décroissante les tissus suivants :
|
+ radiosensibles – radiosensibles |
Au niveau des gonades, des stérilités temporaires ou permanentes à partir de certaines doses peuvent être observées. Chez l’embryon ou le fœtus, c’est le stade du développement qui conditionne les effets, à savoir que la radiosensibilité est maximale entre le 9ème et le 60ème jour. Les conséquences possibles sont la mort intra-utérine, l’apparition de malformations ou encore la mort néo-natale et post-natale. Passé le 60ème jour (croissance fœtale), ce sont des malformations nerveuses ou encore des cancers qui peuvent être ainsi induits.Après avoir vu les effets précoces d’une irradiation sur l’organisme, il convient de s’arrêter sur un deuxième type d’effets qui sont appelés stochastiques ou aléatoires. Ces effets se manifestent longtemps après l’irradiation (plusieurs années) et peuvent être causés soit par une irradiation aiguë soit par une exposition chronique à de faibles doses d’irradiation. Leur apparition chez un individu est d’autant moins probable que le niveau d’irradiation est faible, aussi n’apparaissent-ils pas systématiquement chez toutes les personnes irradiées.
Parmi ces effets, les cancers représentent certainement les conséquences les plus importantes de l’action des rayonnements ionisants et, dans une moindre mesure, l’apparition d’anomalies génétiques. Ces dernières résultent des lésions induites sur les chromosomes (ADN) de la lignée germinale (irradiation des gonades) pouvant entraîner des anomalies dans la descendance de l’individu irradié. Lorsque la molécule d’ADN est touchée, ceci engendre généralement des mutations qui peuvent apparaître dans les cellules-filles lors de la division cellulaire. Toutefois, il existe certains agents de protection comme les vitamines E et C, ainsi que des mécanismes de réparation de l’ADN, de même qu’il existe des systèmes de réparation cellulaire et tissulaire.En ce qui concerne le risque de développer un cancer ou d’être touché par une mutation génétique suite à une irradiation, celui-ci reste très délicat à évaluer, d’autant qu’il n’y a aucune forme de cancer spécifique des rayonnements ionisants et que l’étude de l’effet des faibles doses est loin d’être achevée.
La contamination
Définition
Comme l’irradiation, la contamination n’est pas un terme spécifique au corps humain et s’applique également à l’environnement : elle représente la présence d’une substance radioactive dans un milieu ou au contact d’une matière où elle est indésirable.
Concernant l’être humain, on parle de contamination lorsqu’un individu entre en contact direct avec une source radioactive et ce, de deux manières différentes, mais parfois simultanées :
- par dépôt de substances radioactives (poussières) au niveau de l’épiderme ou des cheveux : c’est la contamination externe
- par incorporation d’éléments radioactifs à l’intérieur de l’organisme : c’est la contamination interne. Les principales voies de pénétration sont :
- la voie respiratoire
- la voie directe par blessure
- la voie digestive
- la voie transcutanée
Une fois le dépôt effectué, la deuxième étape de la contamination correspond au transit du contaminant, depuis l’entrée (poumons, plaie, tube digestif) vers le sang. On comprend alors que les deux premières voies d’entrée sont les plus dangereuses et le plus souvent impliquées dans les accidents de contamination (importante vascularisation des bronchioles).
Vient ensuite l’intégration du contaminant dans le métabolisme : l’organisme va l’utiliser dans différents organes, dits critiques, de la même manière que ses homologues non radioactifs. Par exemple, la thyroïde fixe indifféremment l’iode stable ou l’iode radioactif. Parfois, c’est un autre élément qui est fixé à cause de la similitude de ses propriétés. C’est le cas du squelette qui fixe le strontium de la même manière que le calcium. On dit alors que le strontium est un mimétique du calcium. Parfois encore, il n’y a pas d’organe cible et l’élément diffuse dans tout le corps : c’est le cas du césium qui peut être fixé préférentiellement au potassium et se retrouver dans tous les muscles.
Lorsque la quantité de radionucléides incorporée est importante, on se comporte alors comme une véritable source et on émet des rayonnements sur notre entourage.
D’une manière générale, les accidents de contamination radioactive sont dus à une contamination préalable de l’environnement : habitations, sols et aliments comme dans les régions autour de Tchernobyl (Ukraine et Bélarus) ou au Brésil (Goiania-1987) où une source de radiothérapie de 50 TBq de césium 137 a été dispersée et a contaminé l’environnement et 100 000 personnes.
Irradiation interne
L’irradiation interne accompagne souvent la contamination et ce, à cause des corps radioactifs ingérés ou inhalés qui irradient de l’intérieur les organes sur lesquels ils se sont temporairement fixés. L’irradiation des tissus, qu’elle soit interne ou externe, produit le même type d’effets. En revanche, les rayonnements considérés comme les plus dangereux, ne sont plus les X et les gamma, mais les rayonnements dits particulaires. Les rayonnements particulaires (alpha et bêta) possèdent un pouvoir d’ionisation (Transfert d’Energie Linéique) plus élevé que celui des rayonnements électromagnétiques, aussi délivrent-ils de façon certaine toute leur énergie dans la matière qu’ils rencontrent et qui les arrête. En dosimétrie, la dose équivalente H (en Sievert, Sv) dépend directement de la nature du rayonnement puisque son calcul consiste en la multiplication de la dose absorbée (en Gray, Gy) par un facteur de pondération (Wr) caractéristique du rayonnement :
H(Sv) = D(Gy) * Wr
Wr est égal à 1 pour les bêta, gamma et X, alors qu’il est de 20 pour les alphas. Cela signifie que, pour une même énergie, le rayonnement a est 20 fois plus radiotoxique que les autres.
Par exemple, dans le cas des isotopes gazeux du radon (radon 222 et radon 220), inhalés avec l’air ambiant, ce sont surtout les descendants, émetteurs alpha à vie courte (polonium 218, polonium 214 et bismuth 212), qui vont causer des dégâts aux cellules et qui peuvent, à terme, être la cause du développement d’un cancer du poumon. On estime les doses annuelles moyennes dues à l’inhalation des radon 222 et radon 220 et à leurs descendants à 60 et 10 µSv respectivement.
Conséquences
En ce qui concerne l’irradiation interne, les conséquences sont du même type que lors d’une irradiation externe, c’est-à-dire qu’il peut y avoir des effets au niveau cellulaire, tissulaire ou génétique. Ils peuvent se déclarer rapidement ou tardivement (cancérogènes), essentiellement en fonction de la dose et, mis à part dans les cas extrêmes comme à Goiania en 1987, on meurt rarement des suites d’une incorporation de radionucléides.
La différence avec l’irradiation réside dans la localisation des effets. En cas de contamination interne, il est possible de connaître la zone touchée si l’on connaît le radionucléide incorporé (fixation préférentielle). Les dégâts seront alors souvent localisés, au niveau d’un organe ou des tissus voisins. Enfin, à la différence de l’irradiation externe, souvent de courte durée, une contamination entraîne généralement une irradiation interne des tissus pendant un temps beaucoup plus long. Ce temps sera déterminé entre autres par deux facteurs : la période physique et la période biologique de l’élément incorporé (cf § suivant).
A la différence d’une source radioactive qui se trouve à distance d’un corps et contre les rayonnements de laquelle on peut se protéger, on voit qu’en cas de contamination interne, aucune protection n’est possible, puisqu’on est porteur de la source. Il existe pourtant des moyens de faire diminuer cette contamination, en éliminant directement la source qui continue d’émettre. Ces processus de décontamination n‘ont qu’une efficacité limitée, surtout devant des accidents de grande ampleur.
Décontamination
Lorsque la contamination est externe, on procède par lavages successifs de la zone touchée mais plus généralement du corps entier (douches). Si des poussières sont en cause, des adhésifs sont parfois utilisés pour récupérer les contaminants, dans les deux cas, les eaux de lavage comme les produits utilisés doivent être gérés comme des déchets radioactifs.
Lorsque la contamination est interne, le but est de faire migrer les particules radioactives vers les voies d’élimination naturelles. L’efficacité des traitements va surtout dépendre de la précocité de l’intervention mais également des propriétés du contaminant.
On sait que chaque radionucléide se désintègre au cours d’un période radioactive qui lui est propre. Beaucoup d’entre eux ont des périodes trop longues pour ne compter que sur le temps pour que l’activité disparaisse. De plus, dans le corps humain, chaque radionucléide possède une période biologique [5]. Par la combinaison de ces deux facteurs (période physique et biologique), on peut définir la période effective, comme le temps au bout duquel la quantité de contaminant dans l’organisme est divisée par deux. Te = (Tb*Tp)/(Tb+Tp)
Te : période effective ; Tb : période biologique ; Tp : période physique.
Exemples :
période radioactive | période biologique | période effective | |
iode 131 | |||
plutonium 239 |
Dans le cas particulier de la médecine nucléaire où des sources de radionucléides sont injectées à des patients après l’intervention, on cherche à forcer l’élimination par les voies naturelles. Ainsi, après une scintigraphie thyroïdienne pour laquelle on aura reçu 20 MBq de Technétium 99m, il faudra boire beaucoup d’eau pour que l’élimination par les voies urinaires soit la plus rapide possible. On limitera également le temps de contact avec l’entourage, pendant lequel on peut représenter un danger, surtout auprès des enfants.Enfin, on peut noter l’existence, pour certains radionucléides particuliers, de traitements médicaux plus poussés, dont le principe est de déloger le radionucléide de l’emplacement où il s’est fixé : on nomme ceci la décorporation. On peut citer par exemple comme agent décorporant, le Bleu de Prusse, qui a été utilisé suite à l’accident de Goiania au Brésil en 1987 et qui a permis d’éliminer notablement le césium des personnes contaminées.GLOSSAIRE :
- Activité : Nombre de transformations nucléaires spontanées qui se produisent dans une quantité d’un radionucléide pendant, un certain temps. Dans le système international, l’unité d’activité d’une source radioactive est le becquerel (unité standard de mesure de la radioactivité équivalent à une désintégration par seconde).
- Dose absorbée : Quantité d’énergie absorbée par la matière vivante ou inerte et par unité de masse. L’unité de dose absorbée est le gray : dose absorbée dans une masse de matière de 1 kilogramme à laquelle les rayonnements ionisants communiquent en moyenne, de façon uniforme, une énergie de 1 joule.
- Dose efficace : Pour les besoins de la radioprotection on définit une grandeur appelée dose efficace qui essaie de tenir compte, chez l’homme, des dommages radiologiques occasionnés. Une même dose de rayonnement ne provoque pas les mêmes dommages suivant qu’il s’agit d’irradiation ou de contamination, suivant le type de rayonnement (alpha, bêta ou gamma) et enfin suivant la nature des tissus touchés. L’unité est le sievert (pour les rayonnements gamma et beta, Wr =1) ; La réglementation européenne fixe une limite annuelle d’exposition de 1mSv/an pour le public ; cette limite a été transposée en droit national en mars 2001.
[1] Criticité : conditions dans lesquelles un système est capable d’entretenir une réaction en chaîne.
[2] 0.7 sievert délivrés en une seule fois : dose seuil au-delà de laquelle l’apparition d’un effet précoce est certaine.
[3] Leucocytes : terme général désignant les globules blancs, parmi lesquels on trouve les lymphocytes.
[4] A l’origine des cellules sanguines.
[5] Temps au bout duquel l’organisme élimine la moitié de la radioactivité incorporée.