Fukushima : le Japon durablement contaminé

ACRO
138, rue de l’Eglise
14200 Hérouville St Clair
https://acro.eu.org

Article écrit pour la revue du Réseau Sortir du Nucléaire, août 2011


Dans une vidéo mise en ligne le 17 août sur son site (à télécharger ici), le directeur de la centrale de Fukushima Daï-ichi prie la population de l’excuser pour les « désagréments et l’anxiété causés par l’accident ». TEPCO n’aurait ainsi causé que des désagréments et de l’anxiété ? Et d’ajouter sans vergogne qu’ils font tout pour que les personnes déplacées puissent revenir au plus vite chez elles.

Des rejets massifs de radioéléments

Même arrêtée, une centrale nucléaire est menaçante : la forte chaleur dégagée par la radioactivité du combustible doit être évacuée dans le cœur du réacteur puis pendant des années en piscine. Sans électricité et eau, pas de refroidissement et la pression monte. Il faut donc dépressuriser les réacteurs pour éviter qu’ils n’explosent. C’est ce qui s’est passé dans les réacteurs 1 à 3 de la centrale de Fukushima frappée par un puissant séisme et un tsunami, entraînant des rejets radioactifs massifs. Comme le combustible a fondu, il n’est plus protégé par sa gaine, et les éléments très radioactifs sont en contact direct avec l’eau et l’air. Les explosions hydrogène qui ont eu lieu dans trois des six réacteurs de la centrale et au niveau de la piscine d’un quatrième ont aussi provoqué de forts dégagements de gaz radioactifs.

Tout un cocktail de radioéléments a été rejeté. La quantité estimée a posteriori a changé au cours du temps et dépend de l’organisme qui a fait les calculs. Une chose est sûre, c’est que l’on n’est pas loin des quantités rejetées par Tchernobyl. Les niveaux de contamination relevés jusqu’à des dizaines de kilomètres de la centrale sont aussi similaires à ceux relevés dans les territoires contaminés de Biélorussie. Avec cependant quelques petites différences : contrairement à Tchernobyl, où un incendie a entraîné une forte contamination de la Scandinavie par exemple, les vents dominants ont emporté la majorité de la radioactivité émise par la centrale de Fukushima vers l’Océan Pacifique. Les relevés effectués autour de la centrale ont aussi montré que très peu de plutonium est sorti, alors qu’en Biélorussie, la contamination en plutonium, très toxique, doit être prise en compte dans la délimitation des zones à évacuer. La contamination en strontium est aussi relativement plus faible qu’autour de Tchernobyl.

L’évacuation pour protéger les populations

Les habitants ont été rapidement évacués, parfois dans des conditions chaotiques, dans un rayon de 20 km autour de la centrale et confinés jusqu’à 30 km pour éviter l’exposition au panache radioactif. Le confinement a duré des semaines avant que les habitants soient invités à partir. Comme la centrale est encore menaçante et que l’on ne peut pas exclure de nouveaux rejets une distance de sécurité de 30 km est maintenue. En effet, la centrale est fragilisée et les séismes continuent. À cela s’ajoute la contamination de vastes territoires qui fait qu’une grande partie de ces gens ne pourront pas rentrer chez eux. Ce sont près de 80 000 personnes jusqu’à une quarantaine de kilomètres de la centrale qui ont finalement été évacuées. Et ce n’est sûrement pas suffisant.

Évacuer est une décision terrible, car on perd tout, maison, emploi… C’est aussi le démantèlement des communautés et du lien social très fort au Japon. Les agriculteurs sont les plus pénalisés car ils n’ont presque aucun espoir de retrouver des terres. Nombreux ont refusé de partir et sont restés avec leurs bêtes. Quand les autorités ont bouclé la zone des 20 km autour de la centrale, fin avril, 45 irréductibles ont refusé de partir.

Pourtant, les conséquences de la radioactivité sont pires que l’évacuation et personne n’a réclamé une zone d’évacuation plus étroite. En revanche, les appels à l’élargissement de la zone sont nombreux. Les autorités japonaises ont fixé à 20 millisieverts par an la limite de risque acceptable pour la population, comme pour les travailleurs du nucléaire. C’est 20 fois plus qu’en temps normal et c’est inacceptable (un argumentaire d’ONG japonaises de 16 pages sur le sujet peut être téléchargé ici). Car, contrairement aux travailleurs du nucléaire qui sont sélectionnés et suivis médicalement, il y a des personnes fragiles et vulnérables parmi la population qui doivent être mieux protégées. C’est le cas des enfants particulièrement sensibles aux radiations. Où mettre la limite ? Jusqu’où évacuer ? Ce n’est pas une décision facile. Interrogée par l’ACRO, l’IRSN a déclaré qu’elle recommanderait de mettre la limite à 10 millisieverts par an en cas de situation similaire en France. Et d’ajouter que cela impliquerait d’évacuer 70 000 personnes supplémentaires au Japon. De fait, les familles qui peuvent se le permettre sont parties, ou se sont séparées, la mère et les enfants, ou les enfants seuls envoyés plus loin. Sans aide gouvernementale, d’autres n’ont pas le choix et doivent rester.

La délimitation des zones d’évacuation est seulement définie à partir de l’irradiation externe due aux retombées sur le sol. Mais, les personnes ne partent pas de zéro puisqu’elles ont été exposées aux retombées radioactives : le logiciel SPEEDI développé après Tchernobyl pour calculer l’impact des panaches radioactifs en cas d’accident n’a servi à rien, ou presque. Les prévisions n’étaient pas publiées et pas utilisées par les autorités. Des personnes ont été évacuées dans un abri situé sous les vents dominants où les enfants ont joué dehors. Et la contamination interne risque de continuer via l’alimentation, l’inhalation de poussières…

De la radioactivité détectée à travers tout le pays

L’ACRO a détecté du césium 134 et 137 dans toutes les urines des enfants de la ville de Fukushima qu’elle a contrôlés. Les prélèvements ont été faits par des associations locales avec lesquelles nous sommes en contact. Les niveaux étaient faibles, mais montrent que la contamination interne existe et doit être prise en compte. Les données officielles (traduites en anglais ici) font état de cas avec de plus fortes contaminations. En revanche, la limite de détection des autorités est trop élevée pour pouvoir se faire une idée du nombre de personnes contaminées. Il est important que le suivi officiel soit plus rigoureux.

Des retombées radioactives ont été retrouvées très loin en quantité significative. Du thé radioactif au-delà des normes a été détecté jusqu’à Shizuoka, à environ 300 km de la centrale. De la paille de riz, qui sert à alimenter le bétail, a aussi été retrouvée jusqu’à Iwaté, plus au Nord. L’eau a concentré cette pollution dans les cours d’eau et les stations d’épuration dont les boues sont radioactives. Le pays ne sait pas comment faire face à tous ces déchets radioactifs nouveaux.

Certaines de ces boues ont été incinérées, entraînant une contamination locale importante. L’ACRO a mesuré une contamination en césium dans un sol de l’arrondissement de Kôtô-ku de Tôkyô qui nécessite une surveillance radiologique. De la paille de riz contaminée a été vendue jusqu’à Mié, à 600 km de la centrale, rendant la viande de bœuf radioactive. Le fumier a servi à faire du compost à Shimané à l’autre bout du pays.

La chaîne alimentaire est contaminée

La chaîne alimentaire est donc touchée et la crise provoquée par la découverte de viande de bœuf radioactive au-delà des normes sur les étals a montré que les contrôles officiels n’étaient pas suffisants. Le pays importe près de 60% de sa nourriture, mais est autosuffisant en riz. L’agriculture dans les zones évacuées est suspendue. Au-delà, elle est fortement perturbée, de nombreux aliments ne pouvant pas être mis sur le marché (pour le césium radioactif (césium 134 + césium 137), les autorités japonaises ont fixé à 500 Bq/kg la limite au-delà de laquelle un aliment ne peut pas être vendu). Heureusement, la plupart des aliments vendus en supermarché sont peu ou pas contaminés. Les aliments qui ne passent pas par les circuits commerciaux échappent aux contrôles.

Les végétaux peuvent être contaminés de deux façons. D’abord par les feuilles directement exposées aux retombées. Le transfert est élevé, mais cela ne dure que le temps d’une récolte. Si l’accident de Tchernobyl avait eu lieu en juin, une grande partie de la production de blé en France n’aurait pas pu être consommée. L’autre mode de contamination est via les racines. Le taux de transfert est généralement faible, mais dans les zones très contaminées, cela rend la production d’aliments impossible pendant des décennies à cause du césium 137 qui a une demi-vie de 30 ans. Le thé de Shizuoka devrait pouvoir être consommé sans problème dans l’avenir.

La culture du riz est plus problématique : une étude de l’université de Tokyo, en collaboration avec la province de Fukushima, a montré que le césium s’enfoncerait plus vite dans le sol que ce qui était généralement admis, rendant une décontamination des terrains quasiment impossible. De plus, les fortes pluies de juin et les typhons ont lessivé les sols et concentré la radioactivité dans les rivières. Celle-ci risque ensuite de diffuser lentement dans les rizières où elle va rester piégée. Une surveillance accrue s’impose pendant de longues années.

Le milieu marin est aussi très touché

À toute cette contamination terrestre, s’ajoute une forte pollution radioactive en mer. Outre les rejets aériens qui ont aussi contaminé l’océan sur une grande surface, TEPCO a dû faire face à une forte fuite d’eau très radioactive qui a contaminé durablement la côte. Au même moment, la compagnie a rejeté volontairement de l’eau moyennement radioactive, ce qui a provoqué une confusion et un tollé.

Les sous-sols inondés des réacteurs débordaient dans la mer et il fallait pouvoir pomper cette eau fortement contaminée. TEPCO a donc vidé des cuves pour faire de la place. Pour l’iode , ces rejets volontaires étaient dix fois plus faibles qu’une année de rejets de l’usine Areva de La Hague. En revanche, TEPCO a annoncé que la fuite d’eau du réacteur n°2 a entraîné un rejet estimé à 520 m3 d’eau très radioactive, soit 4 700 térabecquerels (1 térabecquerel représente un million de millions de becquerels) ou 20 000 fois l’autorisation de rejet annuel. Ce seul rejet mériterait d’être classé au niveau 5 ou 6 de l’échelle internationale INES.

La centrale de Fukushima étant proche du point de rencontre de deux courants marins, cette pollution devait être rapidement emportée au large et les autorités se voulaient rassurantes. Mais il n’en est rien. Des mois plus tard, les analyses faites par l’ACRO pour Greenpeace sur des poissons et algues prélevés à des dizaines de kilomètres de la centrale montrent une contamination persistante. Certains de ces échantillons dépassent la limite fixée en urgence par les autorités japonaises pour les produits de la mer. Les fonds marins sont aussi contaminés.

Si les algues et les poissons sont contaminés, l’eau de mer doit l’être aussi. Mais les analyses effectuées par les autorités japonaises ne sont pas assez précises : en dessous de la limite de détection de quelques becquerels par litre, il est annoncé “non détectable”. Or il est nécessaire d’avoir des limites plus basses, car la vie marine a tendance à concentrer cette pollution. La pollution en iode peut être 1 000 fois plus forte dans une algue que dans l’eau. La société d’océanographie du Japon a aussi réclamé des mesures plus précises sur l’eau de mer. Les données sur le strontium sont trop rares.

Un impératif : multiplier les mesures indépendantes

Les rejets continuent. Actuellement, suite à la fusion des trois cœurs de réacteurs qui ont percé les cuves, TEPCO refroidit le magma en injectant de l’eau par le haut et qui ressort via les fuites dans les sous-sols après avoir été fortement contaminée. Il y en a 120 000 m3 dans des structures qui n’ont pas été prévues pour stocker l’eau. TEPCO tente, tant bien que mal, de décontaminer cette eau avant de la réinjecter dans les réacteurs et ose parler de « circuit fermé ». Une partie s’évapore car les réacteurs sont encore très chauds, une autre s’infiltre partout.

Fin avril, TEPCO estimait à 1 térabecquerel par heure (1 million de millions de becquerels par heure) les rejets de la centrale. Ils seraient en baisse. Les rejets étaient estimés à 6,4 fois plus début avril. Fin juillet, TEPCO estime à environ 1 milliard de becquerels par heure les rejets aériens actuels des 3 réacteurs accidentés. Ce chiffre est estimé à partir des mesures faites à l’extérieur à partir de balises. TEPCO est en train de construire comme une tente par-dessus le réacteur n°1 pour contenir les effluents gazeux. Les autres suivront. Elle prévoit aussi d’installer une barrière souterraine pour retenir les fuites vers la mer.

Face à une telle situation, malheureusement durable, l’accès à la mesure de la radioactivité est primordial. On ne compte plus les initiatives en ce sens. Des universitaires sont en train de finaliser une cartographie dans un rayon de 80 km autour de la centrale. Un groupe Facebook a fait analyser de nombreux échantillons de sol de Tokyo… On trouve sur Internet de nombreux relevés de débit de dose ambiant fait par les autorités ou des amateurs. L’ACRO est en contact avec plusieurs projets de vrais laboratoires indépendants pouvant distinguer la pollution radioactive de la radioactivité naturelle. Dans certains cas, nous avons juste fourni du conseil technique. Dans d’autres nous avons installé le laboratoire, testé et qualifié les détecteurs, formé les utilisateurs. Afin de favoriser l’entraide technique et la coopération nous avons aussi initié un réseau. Et pour que ces projets soient pérennes, nous avons lancé une souscription pour ouvrir un laboratoire aussi sophistiqué que le nôtre sur place qui prendrait le relais du soutien technique que nous fournissons actuellement. Cela en collaboration étroite avec les associations avec lesquelles nous sommes en contact depuis de très nombreuses années.

Un projet aussi ambitieux prend du temps à se mettre en place. En attendant, l’association a analysé gracieusement de nombreux échantillons dans son laboratoire en France. Pour nous permettre de continuer, l’ACRO a besoin de votre soutien financier.

Ancien lien

Les becquerels ne sont pas bavards

Le Canard Enchaîné, 7 septembre 2011


Alors, Fukushima, c’est fini ? A en croire la discrétion des médias, oui. Mais en réalité, ça vient juste de commencer. Les Japonais continuent d’arroser en permanence les réacteurs, dont la température est stabilisée : aux alentours de 100°, quand même. Rappelons que, lorsque le tsunami a frappé, les réacteurs se sont arrêtés automatiquement, mais ont aussitôt commencé à chauffer dangereusement, car ils exigent d’être refroidis en permanence, même à l’arrêt. Or, l’alimentation en eau et en électricité ayant été coupée, et les générateurs de secours ayant failli, les combustibles des réacteurs 1, 2 et 3 ont atteint de telles températures qu’ils ont fondu et tout percé. Arroser jour et nuit est le seul moyen d’éviter que cela s’aggrave…
Mais à force d’arroser, plus de 120 000 tonnes d’eau contaminée ont fui et se sont accumulées dans les sous-sols des réacteurs, pas prévus pour faire office de piscines. Cette eau, il faut la pomper, la décontaminer, afin de l’utiliser pour arroser à nouveau, sans trop de rejets alentour. Environ 1500 personnes travaillent sur le site… « Il y en a pour des années, note le physicien nucléaire David Boilley, président de l’ACRO (1), qui revient du Japon où il effectue des séjours réguliers. Et cela pose de sérieux problèmes : si on n’arrose pas assez, ça chauffe. Si on arrose trop, ça inonde… ».
S’il n’y avait que ça ! Mais il y a aussi le combustible usé entreposé dans les piscines (du Mox, notamment), où il continue d’irradier et de chauffer (température stabilisée à 40°) : Tepco envisage d’aller le récupérer, l’an prochain si tout va bien, pour l’entreposer dans un endroit plus sécurisé. Quant au combustible fondu, le corium, « il est déjà évident que cela prendra au moins une vingtaine d’années avant de pouvoir le retirer », note David Boilley. Tout cela sous réserve, évidemment, qu’un nouveau séisme ne vienne pas infliger des dégâts qui pourraient réduire à néant ces bricolages de secours…
Et à part ça ? A part ça, on remarquera que les quatre cinquièmes des réacteurs nucléaires japonais sont à l’arrêt, mais que, curieusement, le pays ne s’est pas effondré : les Japonais ont réduit leur consommation, non sans mal, certes, mais ils ne sont pas revenus pour autant à la bougie. Et, comme c’est curieux, ils se sont mis à se poser des questions, laissant exploser leur colère, notamment sur les blogs : comment avons-nous pu croire aux promesses de ces « gens arrogants » ? Comment avons-nous pu nous laisser berner par les élus ? Les trois convictions sur l’énergie nucléaire – qu’elle est stable, raisonnable et sans danger – se sont effondrées, a constaté un pédégé lors d’un débat public (Japan Times, 9/8). Chez nous, tout va bien.

Jean-Luc Porquet

(1) Association pour le contrôle de la radioactivité dans l’ouest, sur le site de laquelle on trouvera le meilleur suivi quotidien de l’actualité de Fukushima (chronologie, synthèses, etc) : acro.eu.org

Ancien lien

L’EPR Penly 3 n’est pas justifié

Cahier d’acteur de l’ACRO pour le débat public à propos du projet d’EPR Penly 3


Un argumentaire incohérent

Les priorités de la loi de programme fixant les orientations de la politique énergétique [1] sont claires : d’abord la maîtrise de la demande d’énergie, puis la diversification des sources d’énergie pour laquelle, selon l’article 4 [2], « l’Etat se fixe donc trois priorités. La première est de maintenir l’option nucléaire ouverte à l’horizon 2020 en disposant, vers 2015, d’un réacteur nucléaire de nouvelle génération opérationnel permettant d’opter pour le remplacement de l’actuelle génération. La deuxième priorité en matière de diversification énergétique dans le secteur électrique est d’assurer le développement des énergies renouvelables. […] Il convient donc d’atteindre l’objectif indicatif d’une production intérieure d’électricité d’origine renouvelable de 21 % de la consommation intérieure d’électricité totale à l’horizon 2010. »

Avec un EPR en construction à Flamanville, la première priorité se concrétise, mais pas la deuxième. Le projet d’EPR à Penly va donc à l’encontre de la politique énergétique définie par la loi, puisqu’il va renforcer la part du nucléaire dans la production d’électricité qui est déjà supérieure à 80%. Seule la France a une part aussi élevée, ce qui est une aberration en soi, les autres « grands pays nucléaires » étant largement en dessous.

Lors du débat public sur le projet d’EPR à Flamanville qui a eu lieu en 2005-2006, EDF écrivait dans son dossier (page 13) : « En tant qu’industriel, EDF a besoin, pour la réalisation d’une éventuelle série de réacteurs, d’un modèle de réacteur éprouvé par plusieurs années d’exploitation. Cette expérience lui permettrait de déployer une organisation industrielle expérimentée, afin d’optimiser, d’une part le prix de revient de cette centrale – et donc les coûts futurs de l’électricité – et d’autre part, la sûreté d’exploitation et l’impact sur l’environnement. De plus, ces années d’exploitation permettraient de disposer de compétences acquises sur l’installation pour garantir une exploitation de qualité en toute sûreté pour les éventuels réacteurs de série à construire. » Et d’insister, page 31, sur l’importance de « l’expérience d’exploitation suffisante d’un EPR avant de mettre en chantier une éventuelle série. Cette expérience ne s’acquiert que sur la durée : pour disposer d’un produit industriel fiable, maîtrisé et optimisé, il faut avoir exploité cette nouvelle unité pendant une durée raisonnable, estimée à 3 ans environ par EDF. »

Le réacteur de Flamanville est loin d’être terminé. L’EPR de Penly ne sera donc pas « fiable, maîtrisé et optimisé » ? S’agit-il d’un nouveau prototype pour essayer de faire mieux que pour les chantiers EPR en France et en Finlande qui accumulent les déboires et les retards ?

Les réacteurs en construction ne sont pas exactement ceux imaginés initialement par EDF et Areva. L’armature métallique a été largement augmentée à la demande de l’autorité de sûreté finlandaise, ce qui a conduit à des anomalies et des suspensions du chantier de Flamanville par l’autorité de sûreté nucléaire française (ASN). Le système de contrôle commande n’a pas été jugé satisfaisant par les autorités de sûreté de trois pays européens qui « ont demandé aux exploitants et au fabricant d’améliorer la conception initiale de l’EPR [3]. » Aujourd’hui, ce problème n’est toujours pas résolu. Alors que la fiabilité de l’EPR est mise en cause, quels impératifs peuvent justifier la construction immédiate d’un deuxième réacteur en France ?

Un réacteur EPR engage la compagnie pour 80 ans minimum si l’on prend en compte la construction et le démantèlement, et la population pour des milliers d’années avec les déchets nucléaires produits. Il est donc étonnant de voir un tel revirement stratégique en moins de quatre ans. En effet, la consommation d’électricité en France stagne depuis 2005. Elle est même en baisse en 2009. Le remplacement prochain de l’usine d’enrichissement de l’uranium, très énergivore, va rendre disponible la production de trois réacteurs nucléaires environ [4]. En outre, la part d’EDF va en diminuant avec l’ouverture du marché.

Ainsi, fin 2007, le PDG d’EDF, Pierre Gadonneix affirmait encore qu’« il n’y a pas de place pour du nucléaire supplémentaire avant 2020 » [5]. L’argumentaire pour un nouvel EPR à Penly ne paraît ni sérieux ni acceptable.

  • Pour l’ACRO, la décision d’un éventuel renouvellement du parc électronucléaire doit être prise en 2020 à l’issue d’un grand débat national. Le projet Penly 3 n’est pas justifié.

Pour un respect des engagements en faveur des énergies renouvelables

« L’objectif indicatif d’une production intérieure d’électricité d’origine renouvelable de 21 % de la consommation intérieure d’électricité totale à l’horizon 2010 » de la loi de 2005 n’est pas atteint puisque la part de d’électricité d’origine renouvelable était de 15% de la consommation intérieure brute en 2009. L’engagement du paquet climat énergie de l’Union Européenne d’atteindre 20% de la consommation d’énergie (et non d’électricité) d’origine renouvelable en 2020 risque d’être utopique. Avec la loi Grenelle 1 [6], la France va plus loin et « s’engage à porter la part des énergies renouvelables à au moins 23 % de sa consommation d’énergie finale d’ici à 2020. »

Lors de la réunion de clôture du débat EPR tête de série, Bernard Salha, responsable de l’ingénierie nucléaire d’EDF a rappelé « qu’en ce qui concerne les ENR, donc les énergies renouvelables, le Groupe EDF s’est d’ores et déjà engagé à investir 3 [milliards d’euros], l’équivalent du prix du réacteur EPR de Flamanville, dans des projets éoliens d’ici 2010. » Même si cela n’est pas dit explicitement, cet investissement ne concerne pas uniquement la France. Nous sommes en 2010 : cet engagement a-t-il été respecté ? Le coût de l’EPR a fortement augmenté : l’investissement dans l’éolien aussi ?

Aucun chiffre précis n’est donné dans le dossier d’EDF.

  • L’ACRO demande donc que les engagements en faveur des énergies renouvelables soient respectés et qu’EDF soit contrainte de participer à cet effort.

Pour une autre politique énergétique

L’année 2009 a été difficile en termes d’approvisionnement électrique pour la France car EDF accumule les déboires sur le parc nucléaire actuel dont le taux de disponibilité ne cesse de se dégrader pour atteindre 78%, un des plus mauvais au monde. C’est lors des pics de demande, au moment des grands froids, que la situation est la plus critique. La réponse n’est pas la construction d’un nouveau réacteur nucléaire, mais la fiabilisation des moyens de production actuels et l’investissement dans les moyens de lissage des pointes de production.

EDF est en surproduction la plupart du temps, et doit importer massivement de l’électricité très émettrice de CO2 lors de pics de demande pendant les grands froids. La surcapacité d’électricité d’origine nucléaire, observable depuis 1985, oblige de passer des contrats de fourniture avec les pays voisins, notamment la Suisse, l’Italie, la Belgique et la Grande-Bretagne. Ces contrats, ou « droits à tirer », rendent la production d’environ 8 à 10 réacteurs non disponibles pour les pointes de consommation françaises. Il est paradoxal que l’Allemagne, pays ayant décidé un moratoire sur le nucléaire, nous fournisse l’équivalent de la production annuelle de 1,5 réacteur depuis 2004.

La compagnie justifie le réacteur Penly 3 par « une marge de sécurité en termes de capacités de production » sans expliquer en quoi cela va améliorer la situation actuelle. En clair, cela signifie des surplus électriques supplémentaires qui vont pousser la compagnie à encourager encore plus la consommation d’électricité, pour le chauffage notamment, et donc provoquer des difficultés encore plus grandes lors des pointes.

Le Danemark et certains cantons suisses ont interdit le chauffage électrique car c’est une aberration scientifique. En imposant que les nouveaux bâtiments consomment moins de 50 kWh d’énergie primaire par mètre carré et par an à partir de 2012, la loi issue du Grenelle de l’environnement exclut de facto le chauffage électrique. En effet, avec l’électricité, l’énergie primaire produite est environ trois fois supérieure à celle consommée. EDF espère pouvoir continuer à promouvoir le chauffage électrique grâce aux pompes à chaleur vantées dans son dossier. Or, lors des grands froids, elles ne pompent pas beaucoup de calories dans le sol mais beaucoup de watts sur le réseau électrique.

Quant aux voitures électriques dont l’émergence soudaine justifierait les nouveaux investissements dans le nucléaire, leur développement massif se heurte à des verrous technologiques qui hypothèquent beaucoup l’avenir. Peut-on vraiment engager un tel projet sur une hypothèse aussi peu étayée ?

Avec une technologie beaucoup plus simple qu’une centrale nucléaire et génératrice de beaucoup plus d’emplois, il est possible de réduire drastiquement la consommation électrique des bâtiments. Les engagements du Grenelle de l’environnement, avec comme « objectif de réduire les consommations d’énergie du parc des bâtiments existants d’au moins 38 % d’ici à 2020 »  sont un premier pas en ce sens. La Suisse est allée beaucoup plus loin en se donnant l’objectif d’une « société à 2000 watts [7] », soit trois fois moins que la consommation actuelle.

En cas de surplus, EDF compte exporter l’électricité produite. Lors du débat pour le premier EPR à Flamanville, le chantier devait servir de vitrine à l’exportation du réacteur. Faute de commande, il est maintenant proposé de construire le réacteur en France pour exporter l’électricité…

Malheureusement, les nuisances, parmi lesquelles l’exposition des travailleurs, en majorité des sous-traitants au statut précaire, les déchets nucléaires, les rejets dans l’environnement et les risques d’accident, restent en France.

L’évaluation des volumes de déchets produits par l’EPR dans le dossier EDF est largement sous-estimée. Elle se base sur l’hypothèse d’un retraitement intégral qui permet de classer certains déchets en « matière valorisable », même si elle n’est pas valorisée. Cette hypothèse est contredite par le projet d’utiliser du combustible MOx qui n’est pas retraité. Enfin, tous les déchets produits en amont à partir de la mine et en aval par le démantèlement ne sont pas pris en compte.

  •  En proposant une énergie surabondante sans résoudre les problèmes de pics de demande, l’EPR à Penly va à l’encontre d’une politique de sobriété énergétique et va accroître les volumes de déchets radioactifs pour lesquels aucune solution acceptable n’existe, constituant ainsi un legs éthiquement inacceptable pour les générations futures.

Pour un débat clair et utile

Lors du précédent débat public pour l’EPR, la Commission Particulière de Débat Public (CPDP) avait sollicité plusieurs acteurs afin de rédiger un cahier collectif d’acteurs qui devait apporter un éclairage différent sur le projet. Rien de tel n’est proposé cette fois-ci. Pourquoi ? Certes, ce cahier collectif d’acteurs n’était qu’une juxtaposition d’avis divergents, se basant parfois sur les mêmes données de départ, mais c’était mieux que rien. Comme nous l’avions dit lors de la clôture, il aurait été plus pertinent de mettre les acteurs autour d’une table pour définir ce qui fait consensus  et expliciter les dissensions. Le public aurait pu alors comprendre les choix de société qui se cachent derrière les chiffres et s’approprier le débat.

Les quelques engagements pris par EDF à l’issue du débat précédent sont restés lettre morte. Certes une convention a bien été signée entre la Commission Locale d’Information (CLI) de Flamanville, l’Association Nationale des CLI (ANCLI) et EDF pour permettre un questionnement précis du dossier de sûreté, mais elle n’a jamais été activée. Quant à la transparence dont se félicite le pétitionnaire, elle n’existe pas : l’ACRO a pu constater qu’EDF refuse systématiquement de répondre aux questions lors des réunions de la CLI de Flamanville.

Ce mépris d’EDF pour les consultations du public se retrouve sur d’autres dossiers. A Brennilis, suite à l’enquête publique concernant le démantèlement du réacteur, les commissaires enquêteurs écrivent, dans leur rapport, qu’« EDF, malgré la demande de la commission d’enquête, n’a pas souhaité répondre aux recommandations ou réserves émises par la CLI », qui avaient été formulées suite à une expertise de l’ACRO. « En conséquence, la commission d’enquête n’a aucune garantie que ces réserves et recommandations seront effectivement prises en compte par EDF. » Ils ont donc émis, à l’unanimité, un avis défavorable.

Rappelons que la convention d’Aarhus sur l’accès à l’information, la participation du public au processus décisionnel et l’accès à la justice en matière d’environnement, ratifiée par la France [8], impose que « chaque Partie veille à ce que, au moment de prendre la décision, les résultats de la procédure de participation du public soient dûment pris en considération. »

  • L’ACRO regrette que la CPDP ne prenne pas position pour ou contre l’EPR à l’issue du débat et demande des garanties que les demandes du public soient bien prises en compte, conformément à la convention d’Aarhus.

Conclusions

Nous sommes convaincus, comme beaucoup, que le défi énergétique sera l’un des défis majeurs du 21ième  siècle avec l’épuisement des ressources en pétrole et la menace du réchauffement climatique. En ne produisant que de l’électricité, le nucléaire ne peut avoir qu’un impact mineur sur ces problèmes. Tant que les autorités se limiteront à penser en moyens de production réduits à une « alternative infernale » – nucléaire ou effet de serre – et non en utilisation rationnelle de l’énergie, elles seront incapables de répondre au défi. La priorité de toute politique énergétique doit être la réduction de la consommation. Cela est proclamé par les pouvoirs publics et soutenu par les associations de protection de l’environnement, mais sans effets significatifs. Nous aurions donc préféré un large débat sur les économies d’énergie avec, à la clé, des mesures concrètes et des mesures réglementaires qui ne sont pas forcément populaires. Cela aurait été l’occasion de mettre en œuvre une expérimentation d’un véritable processus de démocratie participative beaucoup plus ambitieux que le débat actuel, afin de trouver une synergie entre les moyens techniques, individuels et collectifs à mettre en œuvre pour une meilleure utilisation de l’énergie qui ne soit pas source de conflit.  Malheureusement, l’EPR est présenté comme la solution qui, en servant d’alibi, va à l’encontre de la nécessité de réduire notre consommation. Il va aussi renforcer la dépendance de la production électrique à une mono-industrie, alors qu’il est plus sûr stratégiquement et économiquement de diversifier les sources.

Un réacteur nucléaire n’est pas un produit industriel banal, c’est une installation à risques. Outre la possibilité d’un accident majeur, y compris suite à une intention malveillante, l’EPR émettra des rejets radioactifs dans l’environnement, contribuera à l’exposition des travailleurs du nucléaire et produira des déchets pour lesquels aucune solution éthiquement et socialement acceptable n’est proposée. C’est aussi un investissement lourd qui obère d’autant d’autres investissements.

Les risques spécifiques liés aux radiations ionisantes, pour lesquelles il est reconnu internationalement qu’il n’y a pas de seuil d’innocuité [9], ont un nouveau cadre réglementaire. Le Code de la Santé Publique [10] stipule le principe de justification institué par la CIPR [11] : « Une activité nucléaire ou une intervention ne peut être entreprise ou exercée que si elle est justifiée par les avantages qu’elle procure, notamment en matière sanitaire, sociale, économique ou scientifique, rapportés aux risques inhérents à l’exposition aux rayonnements ionisants auxquels elle est susceptible de soumettre les personnes. » EDF a omis ce premier principe dans sa présentation de la radioprotection, page 118 de son dossier, ce qui est symptomatique… Nous connaissons les risques engendrés par l’industrie nucléaire pour les travailleurs et l’environnement, mais nous ne sommes pas convaincus par les avantages d’un nouvel EPR à Penly ou ailleurs.

  • C’est pour toutes ces raisons que l’ACRO a pris position contre la construction du réacteur EPR à Penly ou ailleurs et pour une autre politique énergétique
[1]  n°2005-781 du 13 juillet 2005

[2] modifié par la loi n°2006-11 du 5 janvier 2006

[3] Communiqué des autorités de sûreté nucléaire française, britannique et finlandaise du 2 novembre 2009

[4] L’enrichissement de l’uranium par ultracentrifugation, qui sera mis en service prochainement dans l’usine Georges Besse II, consomme environ 50 fois moins d’énergie que la méthode actuelle par diffusion gazeuse. L’électricité produite par trois des réacteurs nucléaires du Tricastin dédiée actuellement à l’enrichissement va être disponible pour d’autres usages.

[5] Challenges, 6 décembre 2007 : « Et pour étayer sa démonstration, il s’appuie sur le dernier bilan prévisionnel du RTE, le gestionnaire des réseaux électriques, qui anticipe « une modération dans la consommation électrique » à cause des efforts d’économie d’énergie, tandis que quatre centrales au gaz à cycle combiné entreront en service et que de nouvelles éoliennes procureront 2000 mégawatts supplémentaires. EDF prévoit d’augmenter la puissance des centrales nucléaires existantes, ce qui produira encore 2 000 mégawatts de plus. Bref, les besoins seront couverts. »

[6] LOI n° 2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l’environnement (1)

[7] 2000 watts correspondent à la consommation énergétique moyenne par personne sur la planète. Tendre vers une société à 2000 watts (dont seulement 500 watts d’origine fossile) permet un équilibre entre les pays industrialisés et les pays en voie de développement. La Suisse était une société à 2000 watts dans les années 60. Le Conseil fédéral l’a intégrée dans sa stratégie de développement durable et plusieurs cantons ont adopté la société à 2000 watts comme objectif de leur stratégie énergétique.

[8] La loi n° 2002-285 du 28 février 2002 contient un article unique : Est autorisée l’approbation de la convention sur l’accès à l’information, la participation du public au processus décisionnel et l’accès à la justice en matière d’environnement (ensemble deux annexes), signée à Aarhus le 25 juin 1998, et dont le texte est annexé à la présente loi.

[9]  US National Academy of sciences. 2006. Health risks from exposure to low levels of ionizing radiation. BEIR VII – Phase 2.

[10] Partie Législative [première partie.- Protection générale de la santé – livre III.- Protection de la santé et environnement – titre III.- Prévention des risques sanitaires liés aux milieux – chapitre III . – Rayonnements ionisants]  dans son 1er article

[11] Commission internationale de protection radiologique, www.icrp.org

Ancien lien

La surveillance de l’environnement exercée par une association : l’observatoire citoyen de la radioactivité dans l’environnement

Contrôle n°188, juillet 2010

Livre blanc sur le tritium

Contribution de l’ACRO au livre blanc sur le tritium publié par l’Autorité de Sûreté Nucléaire, juillet 2010


Alors que des experts internationaux recommandent de revoir à la hausse l’impact sanitaire du tritium, les rejets en tritium des installations nucléaires ont tendance à augmenter significativement.

L’ACRO qui surveille cet élément depuis des années dans l’environnement, fait pression pour que ces nouvelles données sur son impact soient prises en compte et que les rejets diminuent. Ainsi, elle a participé activement aux deux groupes de travail mis en place par l’Autorité de sûreté nucléaire et a contibué au livre blanc publié sur le sujet.

Les deux textes de l’ACRO dans le livre blanc sont :

Par ailleurs, la synthèse de ces travaux fait clairement apparaître le point de vue de l’ACRO quand il était divergent de celui des exploitants et des autorités. Le livre blanc complet peut être consulté en ligne ici :
http://livre-blanc-tritium.asn.fr

Ancien lien

La contre-expertise vue par EdF

Lettre ouverte au président de la CLI de Flamanville du 13 novembre 2009


La Commission Locale d’Information (CLI) de la centrale nucléaire de Flamanville a été saisie d’un projet de protocole visant à encadrer strictement la réalisation de prélèvements et de mesure dans l’environnement que pourrait commander la CLI. Ce texte pourrait bien avoir été rédigé par EdF et proposé à d’autres CLI.

L’ACRO a donc réagit très vite en alertant la CLI et les instances nationales garantes de la « transparence » en matière de nucléaire car ce texte va à l’encontre de notre conception de la transparence. En effet, l’exploitant veut contrôler complètement la surveillance « indépendante » que pourrait effectuer la CLI.

Vous trouverez, ci-dessous, le projet de protocole et la lettre de réponse de l’ACRO :

Ancien lien

Un exercice d’expertise pluraliste autour des mines d’Uranium du Limousin

Pierre BARBEY, Représentant de l’ACRO au sein du GEP-Mines, ACROnique du nucléaire n°84, mars 2009


En juin 2006 est annoncée la création d’un « Groupe d’Expertise pluraliste autour des mines du Limousin » (GEP-Mines) qui tiendra sa première réunion les 29 et 30 juin 2006 à Bessines sur Gartempes.

La lettre de mission initiale (9 novembre 2005) adressée par le Ministère en charge de l’Ecologie et l’ASN indique que le « GEP aura pour mission d’apporter un regard critique sur les documents techniques relatifs à la surveillance des sites miniers de COGEMA, afin d’éclairer l’administration et l’exploitant sur les options de gestion et de surveillance des installations ». Le second point de la lettre de mission précise que « par ailleurs, le GEP s’attachera à formuler des recommandations visant à réduire les impacts des sites miniers sur les populations et l’environnement et à proposer des perspectives de gestion des sites à plus ou moins long terme, notamment par comparaison avec des industries de même nature ou des expériences étrangères ». Enfin, le GEP « participera à l’information des acteurs locaux et du public ».

Encadré n°1

Les associations impliquées dans le GEP-Mines :
• le GSIEN
• l’ACRO
• Sources et Rivières du Limousin
• Sauvegarde de la Gartempe

A noter également la participation d’Yves Marignac de WISE-Paris.

La CRII-RAD sollicitée dès l’origine par Annie Sugier a décliné l’invitation.

Les premiers mois de l’année 2006 ont été consacrés à l’exercice délicat (pour sa Présidente, Annie Sugier) de constitution du Groupe. Il associe principalement des experts institutionnels de l’ Institut de Radioprotection et de Sureté Nucléaire  mais aussi de l’InVS (Institut de Veille Sanitaire), de l’exploitant AREVA, des experts étrangers, de nombreux chercheurs et universitaires ainsi que des experts associatifs [voir encadré n°1]. Des représentants de l’administration  (Direction Régionale de l’Industrie de la Recherche et de l’Environnement du Limousin, Autorité de Sureté Nucléaire et  Ministère de l’Écologie, de l’Énergie, du Développement Durable et de l’Aménagement du Territoire) assistent également aux réunions du GEP.

Le GEP a déjà produit trois rapports d’étapes et il poursuit actuellement ses travaux qu’il doit clore au 31 décembre 2009. Son rapport final est donc attendu pour janvier 2010.

Qu’est-ce qu’un GEP ?

Un GEP (Groupe d’expertise pluraliste) est un lieu de dialogue technique permettant à des experts scientifiques d’origine variée (institutionnels, industriels, associatifs, français et étrangers) d’émettre des avis à l’intention des pouvoirs publics, de collectivités locales ou territoriales ou encore de toute structure de concertation concernée. S’inspirant largement de l’expérience du GRNC (Groupe Radio-écologie du Nord-cotentin), au sein duquel l’ACRO s’est fortement impliquée, cette démarche de concertation a été principalement théorisée par Annie Sugier vers la fin 2004. Une note technique sur les modalités de mise en œuvre d’un GEP est disponible auprès de l’IRSN (département Ouverture à la Société).

Sa mise en place peut être sollicitée en particulier dans des contextes de polémiques ou de fort questionnement de populations face à une situation de risque industriel. Cette démarche peut aussi être intégrée à un processus de décision réglementaire (c’est le cas du GEP-Mines). Elle nécessite une lettre de mission des pouvoirs publics qui précisent le champ de la mission et apportent les moyens nécessaires à son exercice.

Le GEP travaille en toute transparence et, en général, il s’attache à intervenir régulièrement devant la structure de concertation locale (CLI ou autre). Il cherche à réaliser une analyse la plus exhaustive possible du dossier traité. Le consensus n’est pas recherché systématiquement et le rapport collectif qu’il produit doit expliciter les divergences de vue éventuelles. Ses avis et ses rapports destinés à l’entité qui délivre la saisine sont obligatoirement rendus publics.

Rappel sur l’histoire des mines d’Uranium en France

L’uranium est un métal présent naturellement dans l’écorce terrestre où il peut se rencontrer aussi bien dans des terrains granitiques que sédimentaires. La teneur moyenne en uranium des roches est de l’ordre de 3 g / tonne (3 ppm). Certaines régions présentent cependant des teneurs sensiblement plus élevées que la moyenne. C’est le cas notamment de certains massifs granitiques avec des teneurs de l’ordre de 10 à 20 g / tonne (10 à 20 ppm).GEP_mines1
En France, dès la création du CEA (Commissariat à l’Energie Atomique) en 1945, des équipes de prospection ont été montées pour trouver rapidement de l’uranium. La prospection de l’uranium s’opère sur la base des propriétés radioactives du minerai recherché (recherche à l’aide de radiamètres), en plus des techniques classiques de recherche minière.

A la fin des années 1940 – au début des années 1950, sont découverts les gisements d’Henriette, dans les massifs granitiques du Limousin (Massif Central), et ceux des Bois Noirs, dans les Monts du Forez.

A la fin des années 60, les principaux districts uranifères français sont découverts et les Divisions Minières, chargées de l’exploitation des gisements dans une même région (environ 1 000 km2), sont créées : Division Minière de la Crouzille dans le Limousin, de Vendée dans l’Ouest, du Forez, de l’Hérault.

Au sein de ce vaste ensemble, l’extraction du minerai d’uranium s’est effectuée sur des sites de taille variée, très proches ou relativement éloignés les uns des autres, tantôt par travaux miniers souterrains (TMS), tantôt par mine à ciel ouvert (MCO) selon la profondeur du gisement. Les minerais extraits des mines étaient envoyés sur une usine de traitement, généralement construite à proximité des sites d’extraction, pour transformation en un concentré d’uranium marchand, le “yellow cake”.

En France, près de 200 sites miniers et huit usines ont été exploités conduisant à une production totale de 76 000 tonnes d’uranium.

Les gisements français étaient assez petits et pauvres comparés aux gisements situés au Niger, Gabon, Australie et Canada. La fermeture généralisée des mines a été entamée à la fin des années 80. La dernière exploitation, à Jouac (Haute-Vienne), a cessé toute activité en 2001.
GEP_mines2Une prise en compte bien tardive des risques liés aux mines d’uranium

Cette phase de prospection intensive puis d’exploitation constitue une période euphorique qui peut faire penser à la ruée vers l’or. Dans ce contexte, les dégâts environnementaux engendrés et les risques sanitaires potentiels ne seront pas, et de loin, une des premières préoccupations des exploitants. Des stériles de mines, radioactifs, seront disséminés en de nombreux endroits, engendrant, de nos jours encore, des risques d’irradiations supplémentaires.

Même si le code minier a été appliqué, il faudra, en fait, attendre près d’un demi-siècle après le début de la prospection pour que ces préoccupations commencent à trouver un encadrement réglementaire. Les dispositions prises pour limiter les transferts de radionucléides vers la population sont entrées en application après l’adoption du décret n°90-222 du 9 mars 1990 qui a introduit une partie “protection de l’environnement” au Règlement général des industries extractives (RGIE). Quant à la présomption de responsabilité de l’exploitant, celle-ci a été affirmée en 1994.

La réglementation en matière d’impact radiologique et de surveillance de l’environnement (décret  du 9 mars 1990) a introduit le principe de « l’exposition ajoutée » qui correspond à la différence entre l’exposition due au site et l’exposition naturelle (sur le site et dans son voisinage avant le début des travaux).

La mise en place d’un dispositif de surveillance est généralement imposée à l’exploitant par arrêté préfectoral lors de la cessation d’activité.

Que ce soit pendant la période d’exploitation d’un site ou après son arrêt définitif, l’exploitant doit respecter des limites annuelles d’exposition ou d’incorporation définies à cette époque.

Encadré n° 2

Limites annuelles des expositions ajoutées fixées par le décret du 9 mars 1990 :

  • 5 mSv pour l’exposition externe ;
  • 170 Bq pour les émetteurs alpha à vie longue de la chaîne de l’uranium 238 présents dans les poussières en suspension dans l’air et inhalés,
  • 2 mJ d’énergie alpha potentielle pour les descendants à vie courte de radon 222 inhalé ;
  • 3000 Bq pour les émetteurs alpha à vie longue dans les poussières d’uranate, la quantité journalière de ces poussières inhalées n’excédant pas 2,5 mg ;
  • 7000 Bq pour le radium 226 ingéré ;
  • 2 g pour l’uranium ingéré, la quantité journalière des composés hexavalents pouvant être ingérée n’excédant pas 150 mg.

Le taux annuel d’exposition totale ajoutée (TAETA) est obtenu en faisant la somme des valeurs des composantes de l’exposition ajoutée (valeur d’exposition mesurée à la fermeture du site moins la valeur mesurée avant la mise en exploitation), rapportées à leurs limites annuelles respectives.

Le calcul du taux d’exposition considéré s’applique aux personnes du public les plus exposées et en se référant à la limite annuelle d’exposition de 5 mSv en vigueur à cette époque.

En octobre 2000 puis en janvier 2002, le ministère en charge de l’Environnement (DPPR) a demandé à COGEMA de vérifier le respect de la nouvelle limite de dose individuelle ajoutée de 1 mSv/an sur chacun de ses sites. Ceci en prévision de l’application du décret n° 2002-460 du 4 avril 2002 transposant en droit français une partie de la directive européenne n° 96/29/Euratom laquelle abaisse la limite annuelle d’exposition pour le public de 5 mSv/an à 1 mSv/an.

La gestion de l’après-mine

Si, comme nous l’avons indiqué précédemment, il n’y a plus en France (depuis 2001) d’exploitation de mines d’uranium, il n’en demeure pas moins une situation d’héritage qui devra être à gérer sur le long terme. Et les affaires médiatisées de Saint-Priest-La-Prugne et du lac de Saint-Pardoux sont là pour nous rappeler qu’il s’agit d’un héritage source de pollutions radioactives de l’environnement.

Tout comme pour la problématique des déchets radioactifs, notre société va laisser là encore un terrible cadeau empoisonné aux générations futures.

La gestion de l’après-mine concerne des volumes très importants de matériaux qui s’expliquent par les modes d’extraction de l’Uranium. Pour accéder aux minéralisations (filons), il fallait soit décaper la partie de roche stérile qui les recouvre (cas des mines à ciel ouvert), soit creuser des galeries dans cette même roche stérile si les minéralisations visées étaient en profondeur (cas des mines souterraines). Les roches situées à proximité d’un gisement, considérées comme stériles sur des critères économiques par l’exploitant minier, peuvent avoir une teneur moyenne plus élevée que des roches équivalentes dans un secteur dépourvu de gisement.

GEP_mines3
La distinction entre le minerai et les stériles se faisait sur la base de contrôles à l’aide de radiamètres [2]. Un second contrôle était effectué sur les camions pour trier les minerais selon leurs teneurs. Ce tri reste grossier et des blocs nettement radioactifs peuvent demeurer dans les stériles.

Les stériles sont soit stockés en tas, appelés verses, sur le terrain naturel à proximité des  lieux d’extraction, soit utilisés en remblais d’anciens travaux miniers. Ils ont en particulier été utilisés pour remplir et boucher les anciennes mines souterraines ou en dernière couche de fermeture de mines à ciel ouvert (juste en-dessous de la couche végétale). Cependant, la pratique de cession de ces matériaux (utilisés comme remblai ou de terrassement) à des entrepreneurs ou à des particuliers constitue une source d’exposition potentielle diffuse du public qui ne sera tracée (registre de cession) qu’à partir de 1984 et encadrée réglementairement depuis 1990.
Quant au minerai extrait, il est transporté dans des installations de traitement. Deux catégories de minerai ont été distinguées :
–    Les minerais à faible teneur [de l’ordre de 0,03 à 0,06% (300 à 600 ppm)] sont traités par lixiviation statique. Les minerais disposés en tas sur des aires étanches, sont arrosés avec une solution acide. Les solutions uranifères recueillies sont dirigées vers une usine de traitement.
–    Les minerais à forte teneur moyenne [0,1 à 1% dans les mines françaises] sont traités par lixiviation dynamique dans des installations industrielles spécifiques. Après une préparation mécanique (concassage et broyage), ils sont soumis à une attaque chimique acide ou basique afin de mettre l’uranium en phase soluble. Les solutions liquides contenant l’uranium sont séparées de la phase solide qui constitue les résidus de traitement. Les solutions contenant l’uranium sont envoyées dans des ateliers d’extraction et de purification. A la fin, l’uranium est mis sous forme solide (le yellow cake avec une concentration de 750 kg / tonne).

Ces résidus de traitement sont stockés soit dans des mines à ciel ouvert soit dans des bassins fermés par une digue [cf. figure]. Ils sont répartis sur 17 sites de stockage placés sous le régime administratif d’installations classées (ICPE).

Le bilan de 50 ans d’exploitation est donc conséquent. Les minerais des mines françaises contenaient entre 600 grammes et quelques kilos d’uranium par tonne. Aussi pour produire 76 000 tonnes d’uranium, quelque 52 millions de tonnes de minerai ont été extraites. Pour produire chaque tonne de minerai, on a manipulé en moyenne 9 tonnes de stériles dans les exploitations à ciel ouvert et 0,65 tonne dans les exploitations souterraines, soit au total 166 millions de tonnes.
La question de la tenue à long terme de ces stockages et leur devenir reste une préoccupation majeure et constitue une source d’inquiétude pour les populations avoisinantes.
A la demande de l’administration, l’IRSN a produit un rapport relatif à la doctrine en matière de réaménagement des stockages de résidus de traitement de minerais d’uranium. Ce rapport de doctrine a été transmis aux préfets des départements concernés par circulaire DPPR du 7 mai 1999. En novembre 2001, la DPPR a demandé à COGEMA de procéder à la vérification de la stabilité des digues. La plupart des stockages de résidus ont dû faire l’objet de travaux de réaménagement.

Les travaux du GEP-Mines

A la demande de l’administration [3], AREVA a produit (fin décembre 2004) un bilan décennal de l’environnement (BDE) de ses sites miniers de Haute-Vienne portant sur les années 1994-2003. En janvier 2006, AREVA a demandé à l’IRSN de réaliser une expertise (appelée tierce-expertise) de ce BDE.

La lettre de mission initiale du GEP-Mines (exposée en préambule) précisait en outre que « le GEP assurera le suivi régulier du déroulement de la tierce-expertise et participera à son pilotage ».
A l’heure où nous écrivons ces lignes, l’IRSN vient de remettre à l’exploitant la 3ème partie de cette tierce-expertise (consacrée à la question de la réutilisation des stériles dans le domaine public). C’est donc dire que le GEP-Mines a encore bien du travail devant lui.

Ce d’autant plus que la vie du GEP n’est pas un long fleuve tranquille. Après avoir rendu un premier rapport d’étape (janvier 2007), il est apparu au terme d’une année de fonctionnement que les conditions pour remplir pleinement la mission qui lui avait été confiée n’étaient pas réunies. Les difficultés (qui portaient principalement sur le financement de ce type de structure pluraliste  mais aussi sur l’absence d’une CLIS couvrant le périmètre de l’étude avec laquelle le GEP est censé dialoguer) ont conduit la Présidente du GEP, Annie Sugier, à présenter sa démission en avril 2007. Les membres du GEP, partageant l’analyse de leur Présidente et soutenant ses demandes, ont néanmoins poursuivi leur travail en attendant la nomination d’un nouveau président.

Une lettre du 12 octobre 2007 confie cette présidence au Professeur Robert Guillaumont. Elle prolonge pour deux années la mission du GEP en la précisant, et en lui demandant de proposer une méthode permettant d’appliquer ses recommandations à d’autres sites miniers. Parallèlement, un arrêté préfectoral du 21 décembre 2007 instaure, par extension de la CLIS de Bellezane, une CLIS chargée du suivi des anciens sites uranifères du département de la Haute-Vienne.

Par souci d’efficacité, le GEP-Mines (constitué en Groupe plénier) a décidé très vite de s’appuyer sur le travail de groupes thématiques qui ont la possibilité d’associer de nouveaux experts apportant de nouvelles compétences.
GEP_mines4

Il n’est pas du ressort, dans ce premier article, d’entrer dans le détail des recommandations du GEP, ce qui serait pour le moins prématuré. Soulignons néanmoins quelques points :
Le GT4 a été créé plus tardivement et il vient surtout en appui des autres Groupes de Travail qui lui formulent des questions techniques relatives aux mesures dans l’environnement.
Le GT3 doit s’approprier un volet réglementaire dense et des textes de doctrines qui le conduisent à procéder à de nombreuses auditions de juristes mais aussi d’acteurs très divers car la question du long terme pose avant tout des questions d’ordre sociétal. Les réflexions du groupe portent notamment sur la qualification juridique (sites, matières…), la responsabilité et  la mémoire des sites, le financement sur le long terme et les scénarios à prendre en compte, le contrôle et la surveillance.
Le GT2 tente de mener de front trois volets complémentaires :
–    il développe actuellement une méthode originale d’évaluation de l’impact environnemental lié aux rejets de substances radioactives et chimiques engendrés par les activités des sites miniers ;
–    après s’être attaché à faire l’analyse de la méthode actuelle de caractérisation de l’impact dosimétrique des sites miniers d’uranium, le GT2 développe une méthode générique alternative pour évaluer cet impact dosimétrique. Elle sera ensuite appliquée au cas des sites réaménagés du Limousin puis le groupe étudiera les évolutions à apporter à cette méthode pour une évaluation d’impact dosimétrique à long terme ;
–    la surveillance sanitaire est aussi une préoccupation du GT2 qui a auditionné les animateurs du registre des cancers du Limousin et travaille maintenant avec des universitaires de Grenoble pour définir des indicateurs de veille sanitaire adaptés.
Parce que ses missions sont en phase avec l’objet même de la tierce-expertise, le GT1 est plus avancé dans ses travaux et il a déjà fourni diverses recommandations adoptées par le GEP-Mines.GEP_mines5

Le Groupe s’est d’abord intéressé au site de stockage de Bellezane constitué de deux anciennes mines à ciel ouvert (MCO) où ont été déposés les résidus de traitement (1,5 millions de tonnes représentant une activité de 48 TBq de radium-226).
Il s’est en particulier attaché à étudier le fonctionnement hydraulique du site, l’efficacité du système de surveillance et l’efficacité de la couverture de stockage des résidus concernant l’exhalation du radon et l’exposition externe.
Le GT1 a notamment recommandé de mettre en place un dispositif de piézomètres  pour investiguer les résidus dans les parties profondes et superficielles du stockage et d’élargir le plan de surveillance en intégrant les anciens forages.

Pour améliorer le plan de surveillance, le GEP demande également la réalisation d’une étude hydrogéochimique qui pourra contribuer à une modélisation hydraulique et hydrochimique validée. Celle-ci a été confiée à l’Ecole des Mines de Paris.

Schéma de circulation des eaux et du dispositif de surveillance sur le site de Bellezane.
1 : prélèvement des eaux souterraines du massif granitique,
2 : exhaure du réservoir minier,
3 : prélèvement des eaux de résidus miniers,
4 : prélèvement des eaux de verses à stériles,
5 : prélèvement des eaux du réservoir minier

Pour améliorer le plan de surveillance, le GEP demande également la réalisation d’une étude hydrogéochimique qui pourra contribuer à une modélisation hydraulique et hydrochimique validée. Celle-ci a été confiée à l’Ecole des Mines de Paris.
Le GT1 s’est ensuite intéressé au bassin versant du Ritord qui a été concerné par d’importants travaux miniers sous forme de MCO et/ou de TMS. Ici, les recommandations du GEP ont plus porté sur une caractérisation des formes chimiques de l’uranium et sur une amélioration du mode de traitement des effluents qui puissent favoriser la formation d’uranium particulaire (plus propice à la décantation). D’autres recherches (absorption sur des écorces d’arbre) semblent encourageantes.
Sans préjuger d’un choix technique à l’heure actuelle, le GEP-Mines considère que la réduction des impacts en aval des rejets miniers doit impérativement passer par la mise en place de traitements spécifiques à l’uranium au niveau des rejets. Mais l’objectif est également de minimiser au maximum les impacts environnementaux liés au traitement. Cela implique de s’orienter vers des techniques dites « passives » dans le sens où elles limitent l’utilisation de réactifs chimiques.
Nous aurons l’occasion de revenir plus en détail sur les recommandations du GEP-Mines après la publication de son rapport définitif en 2010. Signalons cependant que le GEP-Mines, dans le cadre de sa mission d’information du public, a mis en place un site internet [http://www.gep-nucleaire.org/gep] où le lecteur intéressé pourra trouver tous les documents actuellement validés par le Groupe.

Ancien lien

Tiers secteur scientifique : Risque, expertise et partage du savoir

Texte écrit pour le Dictionnaire des risques (Armand Colin 2007) et paru dans l’ACROnique du nucléaire n°79, décembre 2007


Le tiers-secteur scientifique englobe l’ensemble des associations et des initiatives qui produisent des savoirs en dehors des institutions étatiques ou des firmes privées, d’où le terme de “tiers secteur”. Les recherches, études, expertises… qu’il réalise sont gouvernées par d’autres logiques que le désir de puissance ou la soif de profits. Que ce soient des laboratoires associatifs, des associations de malades, des agriculteurs et jardiniers sauvegardant la biodiversité, le mouvement du logiciel libre… les savoirs sont construits selon un mode participatif, au sens où l’élaboration division du travail entre experts et “profanes” (usagers des savoirs) et le rapport de délégation cèdent la place à un dialogue et à la co-production des connaissances et des innovations. Le public du tiers-secteur scientifique se distingue donc du public passif de la vulgarisation scientifique. Des clubs d’astronomie, des groupes ornithologiques ou autres sociétés naturalistes ont aussi montré la fertilité d’une alliance entre spécialistes et profanes. Mais, nous ne nous intéresserons ici qu’aux dynamiques d’apprentissage en prise avec une problématique sociétale particulière qui, malgré une grande diversité de méthodes et pratiques, partagent, non pas une théorie ou un dogme, mais plutôt une vision qu’un autre monde – plus solidaire, plus paisible et plus écologiquement et socialement juste – est possible. Le tiers secteur scientifique a pour ambition d’expérimenter et d’établir l’espace public comme un espace de négociations démocratiques des choix scientifiques et des innovations et s’inscrit donc pleinement, par ses valeurs, ses pratiques et ses résultats cognitifs, dans la mouvance plus large de l’économie sociale et solidaire (aussi dénommée tiers secteur), dont il est un pilier cognitif.

Les grands défis environnementaux, de santé publique ou de société nécessitent une synergie entre des progrès technologiques et des changements comportementaux de la part des usagers. Il suffit de songer à la réduction des gaz à effet de serre par exemple ou aux épidémies pour s’en convaincre. Un monde vivable et vivant ne peut être obtenu que par la construction d’un monde commun. Comme le notent justement M. Callon, P. Lascoumes et Y. Barthes, « l’enjeu, pour les acteurs, n’est pas seulement de s’exprimer ou d’échanger, ou encore de passer des compromis ; il n’est pas seulement de réagir, mais de construire. » C’est là que des structures, où experts et profanes sont sur un pied d’égalité, ont un rôle clé à jouer. Ces expériences sont encore rares, mais innovantes et porteuses d’espoir car leur démarche ne consiste pas simplement à dénoncer, mais à penser, argumenter et construire un savoir alternatif pour dépasser les simples slogans et les « alternatives infernales » : OGM ou faim dans le monde, déchets nucléaires ou effet de serre, … Ainsi, il ne s’agit pas non plus d’affirmer de façon symétrique qu’il y a danger là où les industriels ou pouvoirs publics jurent, paroles d’expert, qu’il n’y a aucun danger, mais plutôt de rendre publiques et expliquer les méthodes qui conduisent à l’évaluation différente de l’activité à risque. Même s’il est beaucoup plus facile de dénoncer un mensonge que de construire une vérité impliquant un apprentissage avec une certaine humilité. Pour répondre aux besoins de la société civile, du développement humain et durable, l’enjeu est donc de s’approprier les problèmes, sans subir les termes dans lesquels ils sont généralement posés, et de parvenir à les formuler autrement en les transformant en enjeu politique et citoyen.

Le tiers secteur scientifique ne peut se réduire à un club de « purs et durs » fiers de leur radicalité ou de leur indépendance, considérés comme objectifs en soi et il n’a pas non plus vocation à demeurer dans les marges des secteurs étatiques et marchands pour combler leurs lacunes ou réparer leurs dégâts. Son développement vise à l’émergence d’une société civile mature, aspirant non seulement à se doter de capacités propres de recherche et d’expertise mais aussi à transformer ses rapports avec la recherche publique, à l’image de que certaines associations de malades ont obtenu et apporté. Pour la Fondation Sciences Citoyennes, le tiers secteur scientifique s’inscrit alors dans un mouvement plus général de recherche d’un nouveau pacte social entre science et société, de maîtrise sociale et de démocratisation de la science, qui comprend aussi bien de nouveaux dispositifs d’élaboration démocratiques des orientations techno-scientifiques, que des espaces où se déroulent des activités de contrôle citoyen de la recherche et des technologies. De ce nouveau pacte social, la recherche publique devrait sortir transformée dans ses priorités et sa gouvernance, mais aussi relégitimée et renforcée face aux intérêts marchands et militaires et à l’actuelle tendance à la privatisation des savoirs.

Mais la science officielle et les pouvoirs publics ne le voient pas du même œil ! Généralement, politiques et savants s’accordent avec Gorgias et Socrate pour estimer qu’il est du ressort des seuls « hommes compétents » « de savoir choisir parmi les choses agréables quelles sont celles qui sont bonnes et quelles sont celles qui sont mauvaises ». Traditionnellement, les scientifiques détiennent « la vérité » puis les hommes politiques en tirent « les conclusions qui s’imposent ». « Ce que les sciences ont donné à ceux qui les nourrissaient n’est pas seulement la possibilité de nouveaux pouvoirs de faire, » comme l’expliquent Philippe Pignarre et Isabelle Stengers, « mais aussi, et parfois surtout, le pouvoir de faire taire, de supprimer les objections, au nom d’une rationalité scientifique apolitique. » Les craintes des citoyens ne seraient liées qu’à des comportements pathologiques dus à l’irrationalité ou à un déficit de communication, voire les deux. Un tel jugement fait fi du fait que la population est de plus en plus éduquée et que le tiers secteur scientifique a souvent atteint un degré de connaissance qui dépasse largement celui des décideurs. Quant à l’industrie, elle tire une partie de ses profits de l’externalisation de ses nuisances et n’est pas prête à remettre en cause cet acquis. Les quelques exemples de tentative d’auto-régulation que sont les agences d’évaluation, comités de sages, etc, ont rarement réussi à répondre aux attentes des usagers. Au contraire, elles contribuent à renforcer la démocratie délégative là où plus de démocratie participative est nécessaire.

La convention d’Aarhus, ratifiée en 2002 par la France, et la charte de l’environnement, adossée à la constitution depuis mars 2005, devraient marquer un tournant dans la démocratisation des décisions touchant à l’environnement. Mais ces textes sont encore trop récents pour avoir un effet sur les pratiques. Pour pouvoir avoir voix au chapitre, la société civile doit donc batailler pendant des années et des modes de contestation radicaux sont souvent indispensables pour faire avancer le débat public. Là où l’expert officiel capitule devant la complexité du problème à résoudre, le citoyen directement concerné n’a pas d’autre choix que le déni, se penser en victime ou chercher à comprendre avec obstination. « L’expérience de la différence se faisant entre subir et créer, entre accepter sur le mode du « il faut bien » anonyme et découvrir/explorer/fabriquer le degré d’autonomie créatrice qui peut être reconquis. » Et I. Stengers et P. Pignarre d’ajouter : « nous dirons que cette expérience est ce qu’il arrive lorsqu’une situation a reçu ce qui ne lui appartient jamais en droit, ou jamais « naturellement » : le pouvoir d’obliger à penser ». Un discours basé sur un état de conscience, une intuition ou même le simple bon sens ne suffisant généralement pas pour être entendu, le tiers secteur scientifique doit s’immiscer dans le débat en s’appropriant souvent les mêmes outils et la rigueur scientifique que la techno-science officielle, mais il le fait avec d’autres méthodes et dans un autre esprit. Les quelques exemples où la controverse scientifique a débouché sur un véritable dialogue, montrent un enrichissement mutuel, car chacune des catégories d’acteurs possède des savoirs spécifiques. Une culture du risque mieux partagée ne peut que conduire à l’amélioration de la vigilance, de la précaution en situation d’incertitude, de la prévention en cas de danger avéré, voire de la survie dans des situations post-catastrophiques. Mais cela peut aussi conduire à la remise en cause de l’activité à risque ! C’est ce que craint le plus le pouvoir technoscientifique qui n’est prêt à accepter des concessions sur son fonctionnement que si cela conduit à l’acceptabilité de ses activités. D’où la réticence à partager la connaissance, car, comme le note La Boétie, « les gens asservis, outre ce courage guerrier, ils perdent aussi en toutes autres choses la vivacité, et ont le cœur bas et mol et incapable de toutes choses grandes. »

Parce que le chemin n’est pas balisé, c’est par la pratique que les associations du tiers secteur scientifique construisent une démarche originale et diverse qui doit s’inscrire dans la durée. Il n’est pas sûr que les recettes qui ont fait le succès des unes fonctionnent pour d’autres problématiques. Ses membres consacrent parfois plus de temps et d’énergie à bâtir et pérenniser l’outil qu’à militer pour la cause qu’ils défendent. La survie financière passe souvent par un soutien public, car la production du tiers secteur scientifique, comme les logiciels ou les semences, est naturellement libre et les résultats d’expertise publics. Comme en France, les fonds dédiés à la communication de la technoscience dépassent largement ceux dédiés à un fonctionnement plus démocratique, il est tentant de simplifier le discours pour satisfaire au format imposé par les médias et attirer des dons du public. Seule une forte implication bénévole, sans laquelle la structure ne serait pas viable, permet de maintenir le cap entre les écueils de l’audimat et le risque d’enlisement institutionnel. Pour de nombreux militants, l’effort consenti n’a d’autres buts que de les aider à vivre dans la société du risque. « Et il se pourrait, en outre, » pour M. Callon, P. Lascoumes et Y. Barthe, « que les solutions proposées […] soient transposables, transportables, dans d’autres champs, là où les sciences et les techniques ne sont pas nécessairement centrales, et qu’elles contribuent ainsi au mouvement plus général de démocratisation de la démocratie ».

David Boilley et Claudia Neubauer

  • BONNEUIL Christophe et GAUDILLIERE Jean-Paul (2001), «Faire entrer les sciences en démocratie – pour un tiers secteur scientifique », EcoRev’ – Revue critique d’écologie politique, n° 5, http://ecorev.org.
  • IRWIN Alan (1995), Citizen Science: A Study of People, Expertise, and Sustainable Development, Routledge.
  • CALLON Michel, LASCOUMES Pierre, BARTHE Yannick (2001), Agir dans un monde incertain , essai sur la démocratie technique, Paris, Seuil.
  • L’expertise et la recherche associative et citoyenne en France, Fondation Sciences citoyennes, 18 mars 2004 (http://sciencescitoyennes.org).
  • PIGNARRE Philippe et STENGERS Isabelle (2005), La sorcellerie capitaliste – Pratiques de désenvoûtement, Paris, La Découverte.
  • LA BOETIE Etienne de,  Discours de la servitude volontaire,  réédité par Flammarion (1993)

dicodico2Autres textes du dictionnaire des risques :

Ancien lien

Déchets nucléaires

Texte initialement écrit pour le Dictionnaire des risques (Armand Colin 2003) et paru dans l’ACROnique du nucléaire n°63, décembre 2003. Cette version a été remise à jour pour l’édition 2007 du dictionnaire et est parue dans l’ACROnique du nucléaire n°79, décembre 2007.


Aucun pays, à ce jour, n’a trouvé de solution pour le devenir de ces déchets qui, pour certains d’entre eux, demeureront toxiques pendant des millions d’années, et dont la gestion pose d’énormes problèmes à l’industrie nucléaire. L’enjeu est double : épurer le passif – des déchets sont parfois entreposés dans de mauvaises conditions et portent atteinte à l’environnement – et proposer une filière d’évacuation dès la source pour tous les déchets à venir, avec traçabilité.

De la mine à la centrale électrique ou l’usine de retraitement, chaque étape de la chaîne du combustible fournit son lot de déchets, généralement classés selon leur radioactivité et leur durée de vie. Seuls ceux faiblement radioactifs et de période courte (inférieure à trente ans) ont trouvé un site d’accueil définitif : ils sont stockés en surface, dans l’Aube, à Soulaines-Dhuys. Ce centre a pris le relais de celui de la Manche, qui a reçu son dernier colis en 1994 et ne satisfait pas aux règles de sûreté des stockages actuels. Pâtissant d’une gestion passée empirique, il contient des radioéléments à vie longue et des fuites portent atteinte à l’environnement. Le centre de l’Aube, huit fois plus grand pour deux fois plus de déchets, sert de vitrine à l’Agence Nationale des Déchets Radioactifs (ANDRA). Le stockage dans des tumuli bétonnés n’y est prévu que pour trois cents ans.

Dans d’autres pays – Suède, Finlande, Allemagne -, ces mêmes déchets sont parfois stockés en profondeur. Cette solution est cependant trop onéreuse et inadaptée pour les 50 millions de tonnes de résidus miniers accumulées pendant les quarante années d’extraction de minerai en France. En Allemagne, les seuls sites de Helmsdorf et de Culmitzsch contiennent respectivement 50 et 86 millions de tonnes et, au niveau mondial, quelque 6 milliards de tonnes sont ainsi accumulées. Si ces résidus sont très faiblement radioactifs, ils ont l’inconvénient de contenir des radioéléments à vie longue : 75 380 ans de période pour le thorium 230. Par ailleurs, l’un des descendants de l’uranium – le radon – est un gaz toxique, ce qui rend le stockage ou l’entreposage difficile. Ces types de déchets sont généralement entreposés dans d’anciennes mines à ciel ouvert ou dans des bassins fermés par une digue, en attendant une meilleure solution qui éviterait les risques de dispersion des radioéléments par érosion ou suintement. Ce problème est maintenant déplacé dans les pays producteurs puisque l’uranium est entièrement importé. Au Gabon, les résidus ont été déversés directement dans le lit de la rivière Ngamaboungou jusqu’en 1975 par la Comuf, filiale de la Cogema.

D’autres déchets très faiblement radioactifs, issus du démantèlement des installations nucléaires, vont aussi poser un problème d’envergure. Ainsi, en France, il va falloir trouver une solution à moindre coût pour les 15 millions de tonnes attendues. Pour une partie de ce volume, un « recyclage » est possible, des seuils de libération introduits par la législation d’origine européenne permettant alors de les considérer légalement comme des déchets non radioactifs. Pour les déchets dépassant les seuils, le centre de stockage en surface de Morvilliers dans l’Aube vient d’entrer en exploitation.

En ce qui concerne les déchets les plus toxiques et à vie longue, dont les volumes sont beaucoup plus faibles, un consensus international semble se dégager en faveur de leur enfouissement, même si l’avancement des recherches dépend beaucoup de considérations politiques locales. En France, outre le stockage en profondeur, la loi du 30 décembre 1991 relative aux recherches sur la gestion des déchets radioactifs a imposé l’étude de la séparation des éléments radioactifs les plus nocifs à long terme, celle de leur transmutation, ainsi que « l’étude de procédés de conditionnement et d’entreposage de longue durée en surface de ces déchets ». Une commission nationale d’évaluation (CNE) relative aux recherches sur la gestion des déchets radioactifs a été mise en place pour rédiger, chaque année, un rapport sur l’avancement des travaux menés dans le cadre de la loi pendant une période de quinze ans. Cette loi d’origine parlementaire constitue une véritable avancée démocratique, mais était malheureusement limitée aux déchets les plus radioactifs. Elle a eu surtout le mérite de faire sortir les déchets nucléaires du champ purement technique pour leur reconnaître un caractère politique.

Une nouvelle loi votée en 2006 prolonge ces axes de recherche. Elle va aussi plus loin en prenant en compte toutes les matières radioactives. Certaines, qualifiées de valorisables, n’ont pas le statut légal de déchet, même si elles ne sont pas valorisées et ne le seront probablement jamais. Suite à de longues procédures judiciaires allant jusqu’en cassation, la jurisprudence française, quant à elle, tend à considérer toute matière radioactive non valorisée comme un déchet.

La séparation et la transmutation proposées par la loi sont parfois présentées comme un recyclage des déchets radioactifs pouvant constituer une solution de rechange au stockage définitif. Elles concernent plutôt les combustibles irradiés issus d’une éventuelle prochaine génération de réacteurs, mais pas les déchets accumulés actuellement. La séparation de certains radioéléments du combustible irradié nécessite des opérations chimiques complexes. Les recherches en cours visent essentiellement à améliorer les capacités de retraitement de l’usine de la Hague. La transmutation, quant à elle, nécessite l’utilisation d’un parc complet de réacteurs nucléaires innovants ; d’autres pays se sont aussi lancés dans ce type de recherches dont certains résultats ne sont pas sans intérêts militaires.

C’est donc un système nucléaire vaste et complexe qui serait à créer pour remplacer des isotopes peu radioactifs à vie longue par des isotopes très radioactifs à vie courte. Faut-il exposer les travailleurs du nucléaire et les populations du présent siècle à un détriment certain sans être sûr de protéger les populations futures dans 100.000 à des millions d’années ? Sans compter le risque d’accident beaucoup plus grand sur un site industriel que dans un centre de stockage. L’industrie nucléaire peine déjà à recycler le plutonium et l’uranium extraits des combustibles usés. Le retraitement, technologie d’origine militaire, est aussi une opération très polluante et onéreuse. Un retraitement poussé ne ferait qu’augmenter ces coûts, d’autant plus que la convention internationale OSPAR impose de faire tendre vers zéro les rejets dans l’Atlantique Nord d’ici 2020. L’exposition aux rayonnements ionisants engendrée par cette pratique n’a jamais été justifiée par les avantages économiques, sociaux ou autres, par rapport au détriment qu’ils sont susceptibles de provoquer, comme l’impose pourtant la réglementation. Comment alors justifier des opérations plus complexes ? De plus, dans la mesure où il conduit à vitrifier les résidus, le retraitement rend difficile la reprise ultérieure des déchets soit parce qu’une matrice meilleure aura été trouvée, soit pour une séparation plus poussée. Le choix du retraitement, jamais débattu, ferme des options de gestion aux générations futures.

Pour les déchets actuels, ne restent donc que le stockage souterrain ou un entreposage en surface à plus ou moins long terme. Dans tous les pays, l’industrie nucléaire semble pencher vers une « évacuation géologique », même si l’on n’en est qu’au stade des études. Le Waste Isolation Pilot Plant (WIPP) dans une formation saline du Nouveau-Mexique aux Etats-Unis fait figure de pionnier avec son premier colis de déchets reçu en mars 1999. Il est destiné aux déchets transuraniens issus de la recherche et production d’armes nucléaires. Cette stratégie est basée sur l’oubli, dans la continuité de la gestion mise en œuvre pour les stockages en surface. Le pari est fait que des barrières bétonnées ou géologiques retiendront les radioéléments sans intervention humaine, le temps nécessaire à leur décroissance. L’argument généralement avancé est la protection des générations futures. Cette interprétation suppose une certaine défiance envers la capacité de nos successeurs à faire face aux dangers provoqués par les déchets nucléaires. Mais ces centres de stockage sont conçus pour que l’exposition théorique des générations futures satisfasse aux normes de radioprotection actuelles, normes qui seront fort probablement modifiées dans l’avenir. En cas d’erreur ou de problème, il est difficile de revenir en arrière sans travaux coûteux et risqués pour les travailleurs et l’environnement. La réversibilité du stockage profond, rendue obligatoire par la loi de 2006, est limitée à la phase d’exploitation et ne fait que différer l’échéance de la solution définitive. A la fermeture, l’étanchéité du site impose de fermer l’accès définitivement, les éventuels colis défectueux ne pouvant alors être repris qu’à l’issue de travaux miniers lourds.

La notion de réversibilité, qui découle du principe de précaution, est récurrente dans le débat sur les déchets. Elle est surtout présentée comme un argument d’acceptabilité pour l’enfouissement par les partisans du nucléaire qui se gardent bien de l’appliquer au retraitement. L’entreposage provisoire est, quant à lui, par essence réversible puisque au bout d’une certaine période estimée à une centaine d’années, il devra être entièrement renouvelé pour garantir le confinement ou pour s’orienter vers une autre option. Lors du débat national organisé fin 2005, cette notion d’entreposage pérennisé a eu les faveurs du public, preuve de sa confiance en la capacité des générations futures à faire face aux problèmes. Mais, elle est ignorée par la nouvelle loi de 2006 car elle est perçue comme une solution menaçante pour les opérateurs du nucléaire dans la mesure où elle érige la réversibilité en principe absolu et non plus relatif, obligeant ainsi à explorer d’autres possibles et corrélativement remettre en question des choix actuels. De plus, cette démarche, basée sur une mémoire active transmise de génération en génération, impose de démocratiser la gestion des déchets nucléaires car seule une information honnête et redondante permettra de faire face aux aléas. La prise en compte des générations futures commence par la génération actuelle…

La réversibilité implique aussi de garder plusieurs options ouvertes afin de pouvoir revenir sur certains choix. Pour limiter le coût humain et financier lié à la multiplication des options – « l’énergie nucléaire doit rester compétitive ! » – une hiérarchisation s’impose entre les options a priori prometteuses pour lesquelles des développements technologiques lourds sont nécessaires et celles pour lesquelles un effort modéré de Recherche et Développement devrait suffire à maintenir l’option ouverte. Avec le risque de rendre tout retour en arrière plus difficile par les investissements déjà consentis. Il a fallu, par exemple, beaucoup de courage politique aux autorités pour arrêter le surgénérateur Superphénix pour lequel la commission Castaing (1996), chargée d’évaluer ses capacités en tant qu’incinérateur, avait regretté « la maigreur du programme envisagé » pour la destruction des déchets, mais avait préconisé son maintien en activité à cause des investissements réalisés.

L’hypothèse d’un stockage à l’étranger dans des pays moins regardants séduit les autorités qui doivent faire face à une forte contestation de leurs populations. Une société britannique de droit suisse a pour but de convaincre l’Australie d’accepter ce rôle. La Russie a modifié sa législation pour accepter des déchets étrangers. Taiwan ou le Japon lorgnent du côté de la Chine populaire. Des arguments techniques fallacieux sur la densité de population ou la qualité des roches sont utilisés pour rassurer les personnes gênées par le caractère immoral de cette option. En France, l’article 3 de la loi de décembre 1991 stipule que « le stockage en France de déchets radioactifs importés, même si leur retraitement a été effectué sur le territoire national, est interdit au-delà des délais techniques imposés par le retraitement ». Mais des déchets étrangers, issus du retraitement, auraient dû être renvoyés dans leur pays d’origine depuis longtemps. Et les contrats allemands, qui prévoient l’hypothèse d’un non-retraitement sans pénalité, transforment de fait l’usine de La Hague en centre d’entreposage international.

La gestion des déchets radioactifs nécessite des choix collectifs problématiques impliquant une perspective temporelle inhabituelle : comment prendre des décisions pour les générations et sociétés lointaines ? Contrairement aux problèmes posés par l’introduction de nouvelles technologies comme celles des OGM, pour lesquelles un moratoire pourrait être utile pour nourrir la réflexion, trop reporter les décisions pourrait être préjudiciable. Les déchets existent et demandent une gestion rigoureuse dès leur production. Mais des considérations à court terme concernant par exemple la poursuite ou non du programme nucléaire viennent interférer et risquent d’emporter les décisions. En effet, pour pouvoir obtenir l’assentiment de la population, il faut absolument pouvoir prétendre avoir une solution pour les déchets. Un compromis prudent pourrait être réalisé à travers une approche séquentielle de la décision, avec des échéances régulières sans que soit fixée a priori une limite temporelle à ce processus afin de garantir la liberté de choix de nos descendants.

David Boilley

Bibliographie :

  • ACRO (2006), Gestion des déchets nucléaires : les leçons du Centre de Stockage de la Manche, https://acro.eu.org
  • ANCLI (2006), Livre blanc : Matières et déchets
    radioactifs – territoires, http://www.ancli.fr
  • BARRILLOT Bruno et DAVIS Mary (1994), Les déchets
    nucléaires militaires, éd. du CRDPC
  • CHARPIN Jean-Michel, DESSUS Benjamin, PELLAT René (2000),
    Etude économique prospective de la filière
    nucléaire : rapport au Premier ministre, La Documentation
    française
  • CNRS (2006), Recherche et déchets nucléaires : une
    réflexion interdisciplinaire, Cahiers risques collectifs et
    situations de crise n°5, MSH-Alpes
  • FAUSSAT Armand  (1997),  Les déchets
    nucléaires, Stock
  • HERIARD-DUBREUIL Gilles (2000), Comment mener une politique
    à long terme ? le cas des déchets nucléaires,
    Esprit
  • Rapports de l’Office parlementaire des choix scientifiques et
    technologiques
  • Rapports et documents de la Commission Nationale de Débat
    Public, http://www.debatpublic-dechets-radioactifs.org/
  • Rapports de la Commission Nationale d’Evaluation, La
    documentation française.

dicodico2Autres textes du dictionnaire des risques :

Ancien lien

L’ACRO : 20 ans de surveillance citoyenne des installations nucléaires

David Boilley, S!lence n°343, février 2007. La version publiée dans S!lence était un peu plus courte et n’incluait pas les références.


L’ACRO revendique son appartenance au “tiers secteur scientifique” qui se caractérise par la construction de savoirs selon un mode participatif


L’ACRO, Association pour le Contrôle de la Radioactivité dans l’Ouest, a été fondée dans une région fortement nucléarisée, en réponse à la désinformation et à la carence en moyens de contrôle indépendant et fiable de la radioactivité [1]. Ces problèmes locaux ont pris une importance nationale suite à la catastrophe de Tchernobyl qui a fait de tous les Européens des riverains d’une installation nucléaire. La volonté de minimiser l’impact sanitaire des rejets dans l’environnement des installations nucléaires et des retombées de Tchernobyl est apparue comme insupportable à de nombreux citoyens. L’ACRO a donc été créée avec pour but principal de permettre à chacun de s’approprier la surveillance de son environnement au moyen d’un laboratoire d’analyse fiable et performant et de s’immiscer dans un débat technoscientifique par l’accès à l’information. En effet, un discours basé sur un état de conscience, une intuition ou même le simple bon sens ne suffit pas pour être entendu par les décideurs, qu’ils soient technocrates ou élus. C’est pour cela que l’association utilise les mêmes outils scientifiques que la technoscience officielle pour faire avancer le débat.

Les sollicitations spontanées des particuliers sont trop peu nombreuses pour justifier le maintien d’un laboratoire associatif comme l’ACRO. Pourtant, ce qui distingue sa démarche de la surveillance institutionnelle et réglementaire, c’est son travail « avec » la population et non « pour » elle. L’ACRO va donc au-devant des populations pour exercer une surveillance citoyenne des installations nucléaires du Nord-Cotentin et de Haute-Normandie : ce sont les riverains qui organisent et effectuent les prélèvements destinés à être analysés dans le laboratoire. Il ne s’agit pas de remplacer la surveillance officielle, dont les moyens sont beaucoup plus grands, mais de la compléter et de l’aiguillonner. Ce travail de longue haleine a pour but d’arracher aux seuls experts le monopole de la gestion des questions environnementales qui concernent tout le monde, pour en faire un enjeu politique. Les citoyens impliqués dans cette démarche deviennent des vigies qui ont su mettre en évidence de nombreux dysfonctionnements. C’est cette démarche que l’association va étendre à la région de Gravelines et exporte en Biélorussie dans les territoires contaminés par la catastrophe de Tchernobyl [2].

Un fonctionnement associatif

L’ACRO est indépendante politiquement et est entre les mains de ses adhérents par le fonctionnement démocratique inhérent à toute structure associative avec une voix par personne et une limitation des pouvoirs. Alors que de nombreuses associations se contentent de donateurs qui n’ont pas le droit de vote, l’ACRO estime important d’avoir des adhérents qui exercent un contrôle de ses activités. L’association s’est donné comme mission première de tenter de répondre aux préoccupations de la population, ou le plus souvent de ses représentants que sont les associations ou parfois les élus locaux qui nous sollicitent. Ses actions peuvent donc apparaître opportunistes du fait de l’évolution des demandes, mais elle répond toujours à celles-ci avec rigueur scientifique et transparence.

L’ACRO revendique son appartenance au « tiers secteur scientifique [3] » qui se caractérise par la construction de savoirs selon un mode participatif, au sens où la division du travail entre experts et “profanes” (usagers des savoirs) et le rapport de délégation cèdent la place à un rapport de dialogue et de co-production des connaissances et des innovations. Le public du tiers secteur scientifique se distingue donc du public passif de la vulgarisation scientifique. Des clubs d’astronomie, des groupes ornithologiques ou autres sociétés naturalistes ont aussi montré la fertilité d’une alliance entre spécialistes et profanes. Mais dès qu’il y a un enjeu technoscientifique, le partage du savoir ne va plus de soi. Les craintes des citoyens ne seraient que des comportements pathologiques dus à l’irrationalité ou à un déficit de communication, voire les deux. Un tel jugement fait fi du fait que la population est de plus en plus éduquée et que le tiers secteur scientifique a souvent atteint un degré de connaissance qui dépasse largement celui des décideurs.

Cette situation est typiquement française : dans d’autres pays, des structures associant profanes et scientifiques sont parfois plus institutionnalisées. C’est le cas des boutiques de science en Hollande ou des ARUC (Alliances de Recherche Université-Citoyens) au Canada. Dans ces structures universitaires, des scientifiques consacrent une partie de leur temps de recherche à des missions d’expertise ou de recherche sollicitées par les citoyens. En France, l’expertise citoyenne passe par le milieu associatif et doit constamment faire ses preuves. Vingt ans après sa création, l’ACRO est encore présente, ce qui représente une prouesse permanente. En effet, il est impossible de dire si les finances permettront à l’association d’exister dans 6 mois. La gestion au jour le jour occupe une grande part de l’activité.

Difficile indépendance

Pour pouvoir fonctionner, l’ACRO fait, entre autres, appel à des soutiens financiers publics car un laboratoire incontestable avec cinq permanents compétents coûte cher, même si ceux-ci ne sont pas rétribués à leur juste valeur. Les ressources sont diversifiées afin de maintenir une indépendance et sont toujours insuffisantes. Outre une trentaine de mairies qui subventionnent (parfois symboliquement) sans contrepartie, la plupart des soutiens sont liés à un ou plusieurs contrats d’étude particuliers où, souvent, un co-financement est exigé. La motivation des bailleurs est variée : certains élus ou une CLI (Commission Locale d’Information) préfèrent l’ACRO en se disant que les résultats ne seront pas contestés par la population ; certaines administrations sont plutôt attirées par le coût des analyses (comme pour le radon) ; d’autres, comme le Ministère de l’Environnement, voient dans son action une mission de service public qu’ils veulent soutenir. Ces financements ne sont pas pérennes et doivent être régulièrement renégociés. Surtout, ils ne suffisent pas à couvrir tous les coûts engendrés par l’activité associative : sans un engagement bénévole important, il y a longtemps que l’ACRO aurait cessé d’exister. Mais c’est aussi cette dimension citoyenne qui fait peur aux pouvoirs publics. Le soutien est donc réduit au strict minimum. Le laboratoire effectue des analyses pour des particuliers (moins d’une dizaine par an, hélas) et des associations et des études pour des associations ou des collectivités locales. Ce travail permet de faire fonctionner le laboratoire, de financer la surveillance citoyenne des installations nucléaires, d’accroître les compétences et surtout d’aller investiguer des zones qui échappent aux contrôles officiels.

Obligation de transprence

Toutes les études font l’objet d’un article dans « l’ACROnique du nucléaire » et/ou sont mises en ligne sur Internet : https://www.acro.eu.org. L’ACRO est intransigeante sur le respect de ces conditions de diffusion, ce qui lui vaut parfois de perdre des contrats. De plus, elle ne travaille pas pour les exploitants nucléaires. L’information, et non la communication, occupe également une part importante de son activité. L’enjeu est de rendre ses travaux accessibles à tous et de vulgariser les débats techno-scientifiques liés au nucléaire afin de permettre à chacun de s’approprier les problèmes, sans subir les termes dans lesquels ils sont généralement posés. Cela signifie une argumentation solide qui dépasse les simples slogans, même si cela n’est pas médiatique. Pour que la réflexion prime sur les schémas de pensée pré-établis, l’association ne se revendique pas comme antinucléaire (ni pro-nucléaire…). C’est un atout primordial qui sert la crédibilité de l’information délivrée, mais est parfois mal perçu. Ainsi, le citoyen doit pouvoir se faire sa propre opinion et décider de son avenir, de l’avenir de ses enfants en connaissance de cause.

Les sollicitations pour des interventions publiques sont nombreuses de la part d’autres associations ou collectifs, du milieu scolaire, mais aussi des pouvoirs publics. Dans ce dernier cas, il n’est pas toujours facile de savoir, a priori, si l’invitation sert à donner une apparence démocratique à un débat ou s’il y a une réelle volonté d’entendre un son de cloche différent. D’autant plus que c’est souvent les deux ! Mais dans tous les cas, il apparaît important d’apporter un autre point de vue à une audience qui parfois peut déboucher sur des prises de décision. Il en est de même pour les articles écrits dans des revues officielles. D’une manière plus large, l’ACRO accepte les gestes d’ouverture des autorités en participant à de nombreuses instances de concertation. Cette prise en compte du tiers-secteur scientifique est encore nouvelle en France et l’ACRO a fait le choix d’expérimenter les procédures de consultation. C’est un travail difficile et délicat, qui comporte des risques d’erreur et celui d’être critiqué. Cette démarche lui a valu de nombreuses attaques du milieu associatif [4]. Il est vrai que toutes les structures officielles sont là pour accompagner des installations nucléaires en place ou ayant un travail rétrospectif à faire. Comme souvent pour les activités à risque, la justification même de l’activité ne peut y être débattue.  Penser que l’on peut obtenir d’elles la remise en question du nucléaire serait très naïf.

Cette démarche participative, rejetée par d’autres associations, n’est pas systématique. Chaque sollicitation est traitée au cas par cas et entre dans le cadre d’une charte votée en AG [5]. Sans être dupe de la volonté gouvernementale, l’ACRO pense que les rares gestes d’ouverture de certaines administrations en faveur d’une prise en compte des questions de la population méritent d’être soutenus. Bien sûr, les instances de concertation ne sont pas toutes utiles. Certaines CLI ronronnent alors que l’Association Nationale des CLI a ouvert des brèches intéressantes. On peut aussi citer le cas de la commission Tchernobyl présidée par le Pr. Aurengo au fonctionnement catastrophique, mais où la participation associative a permis un enterrement du rapport final. En revanche, la participation au Groupe Radio-écologie Nord-Cotentin [6] a été plus profitable. Outre le fait que toutes les mesures réglementaires dans l’environnement et les modèles d’impact sanitaire sont devenus publics, ces travaux ont conduit à une réévaluation des autorisations de rejet pour Cogéma-La-Hague qui sont devenues beaucoup plus précises et contraignantes. L’ACRO a acquis au sein de ce groupe des compétences nouvelles qui lui ont permis de mettre en évidence que la Cogéma a sous-estimé d’un facteur 1 000 ses rejets en ruthénium radioactif lors des incidents de 2001 [7].

Les relations avec le milieu de la recherche fondamentale sont d’un autre ordre. Tout comme au GSIEN [8] dont l’ACRO est très proche, les universitaires qui s’investissent ou soutiennent l’association le font de manière privée. Certains ont un engagement notoire et connu de tous. D’autres apportent leurs compétences de façon plus ponctuelle quand ils sont sollicités. A notre connaissance, aucun n’a subi de pressions professionnelles.

Nombreuses embûches

Il est trop long de passer en revue tous les succès et les échecs de l’ACRO. Les embûches ont été nombreuses en 20 ans d’existence. Les membres les plus anciens se rappellent de la Cogéma affirmant dans les médias que l’ACRO multiplie tous ses résultats par 10 pour se mettre en valeur ou du Ministère des Affaires sociales (dont dépendait le SCPRI du Pr. Pellerin) empêchant l’affectation d’un objecteur de conscience… Ou encore de l’ANDRA portant plainte contre l’ACRO et deux de ses membres. Le principal exploit est donc sûrement d’avoir réussi à exister aussi longtemps et d’être devenu un acteur crédible qui traite aussi bien avec les institutions qu’avec Greenpeace. Plus personne ne conteste ses mesures, seulement l’interprétation qui en est faite et la dernière étude réalisée pour le compte de Greenpeace a eu un impact international important. D’un point de vue environnemental, on peut mettre au crédit de l’association le fait d’avoir joué un rôle majeur dans la réduction des rejets de l’usine Cogéma de La Hague ou d’avoir révélé les nombreux dysfonctionnements du centre de stockage de la Manche. Plus ponctuellement, l’association a révélé une contamination anormale par du radium du site de l’ancienne usine Bayard qui fabriquait des réveils luminescents à St Nicolas d’Aliermont en Haute-Normandie. C’est grâce à cette affaire que les seuils de décontamination des sites contaminés ont été révisés.

En participant aux débats et en faisant pression sur les politiques, les associations impliquées ont réussi à obtenir que la loi sur les déchets radioactifs inclue toutes les matières radioactives, que le site de Bure ne soit pas transformé en un centre de stockage par un simple décret comme le prévoyait le gouvernement… Mais, malheureusement, l’enfouissement des déchets et le retraitement des combustibles irradiés restent la solution de référence. Cela fait partie des principaux regrets de l’association, avec le chantier du réacteur EPR, la prolifération nucléaire, l’oubli et le déni dont sont victimes les populations vivant dans les territoires contaminés par Tchernobyl… A ces défis pour lesquels personne n’a la solution, des défis propres viennent s’ajouter : élargir ses capacités de mesure, augmenter le nombre d’adhérents pour peser plus sur les pouvoirs publics et stabiliser sa situation financière.

C’est malheureusement un classique de nos sociétés de surabondance que d’entretenir le sentiment de rareté et de guerre, maintenant économique, pour maintenir un statu quo. Alors que la richesse atteinte permettrait à tous de mener une vie harmonieuse avec une organisation sociale différente, les défis écologiques imposent de mener une vie plus sobre, mais plus épanouie, car libérée de nombreuses peurs. Or, il n’est question que de « parts de marché à conquérir », « retard français » ou « maintien de notre avance dans la compétition internationale » entraînant une surproduction et un gaspillage. En face, de nombreuses associations de protection de l’environnement raisonnent en service public de l’énergie pour satisfaire les besoins primordiaux de l’humanité. L’incompréhension est totale. Au-delà de l’EPR et du nucléaire, et même du défi énergétique, la question est de savoir « comment récuser la fuite en avant insensée qui voit […] la science soumise à la technique, la technique au marché et le marché à la volonté de puissance de ces nouveaux maîtres du monde incapables de maîtriser leur propre maîtrise ? » [9]

« Changer de vie et changer la vie » [9] passe aussi par le refus des logiques guerrières et identitaires de nos sociétés, et malheureusement aussi parfois du mouvement altermondialiste et antinucléaire. C’est un chemin qui n’est pas balisé. Mais c’est par la pratique que l’ACRO bâtit une démarche originale pour apprendre à vivre dans une société du risque en transformant en enjeu politique et citoyen des problèmes posés en termes uniquement technoscientifiques. Ce n’est qu’un petit pas vers plus de démocratie participative. L’engagement du citoyen dans la vie de la société revêt diverses formes qui peuvent être syndicale, politique, associative. Toutes ont des atouts et des limites. Une société démocratique implique une (bio)diversité des approches et des actions.

 


[1] Lire Sezin Topçu, ACRO : vingt ans de combat pour une expertise citoyenne, ACROnique du nucléaire n°75, décembre 2006.

[2] Lire Les silences de Tchernobyl, Autrement, 2006

[3] Lire David Boilley et Claudia Neubauer, Le tiers secteur scientifique, in Dictionnaire des risques, Armand Colin, nouvelle édition à paraître.

[4] L’ACRO a répondu systématiquement à ces critiques.

[5] La charte est ici. Lire le dossier de l’ACROnique du nucléaire n°73, juin 2006 : Nucléaire et concertation publique.

[6] Lire Yves Miserey et Patricia Pellegrini, Le Groupe Radioécologie Nord-Cotentin : l’expertise pratique en question. L’impact des rejets radioactifs dans le Nord-Cotentin sur les risques de leucémies, La Documentation française, janvier 2007

[7] Tous les détails de cette affaire sont ici.

[8] GSIEN : Groupement des Scientifiques pour l’Information sur l’Energie Nucléaire, 2 rue François Villon, 91400 Orsay.

[9] P. Viveret, Pourquoi cela ne va pas plus mal ?, Fayard 2005.

Ancien lien