Hiroshima et 50 ans de nucléaire militaire

1- Hiroshima, Nagasaki
6 Août. Beau temps
« Chaque matin jusqu’à ce jour, la voix familière de la radio annonçait aux informations qu’une escadrille de huit B 29 était en train de progresser vers le nord, au-dessus de la mer, à cent kilomètres au sud du détroit de Kii. Ce matin là, elle annonçait « qu’un seul B 29 était en train de progresser vers le nord ». Je n’ai pas pris garde au fait : nous étions jour et nuit habitués à ces sortes de nouvelles et une alerte nous faisait autant d’effet qu’une sirène d’avant guerre annonçant midi. Je me suis donc rendu à la gare de Yokogawa pour prendre comme d’habitude le train de Kabe et aller à mon travail du matin (….).
A ce moment là, à trois mètres sur la gauche du train qui allait partir, j’ai vu une boule de lumière si forte qu’elle m’a aveuglé : tout est aussitôt devenu noir, je n’ai plus rien vu. J’ai eu l’impression soudain d’être enveloppé par une espèce de rideau noir (…). Le B 29 avait lâché une bombe toxique rendant aveugles les hommes, et notre train avait été directement bombardé : telle était du moins mon opinion provisoire. »
C’est ainsi que Shigematsu Shizuma1, « atomisé » lors de l’explosion atomique à Hiroshima le 6 Août 1945 à 8h15, commence son « journal d’un sinistré ». Il raconte ensuit que plus tard, ayant rouvert les yeux et décidé de quitter la gare pour rentrer chez lui, à « (son) grand étonnement, toutes les maisons à l’entour étaient presque sans exception à terre, et leurs tuiles jonchaient entièrement le sol (…). L’aspect de la ville avait complètement changé. Des camions de blessés, complets, filaient sans arrêt, ainsi que des autos montées par des officiers d’infanterie (.. .). Une foule de blessés marchaient, qui ressemblaient à ceux que j’avais déjà rencontrés sur le talus du chemin de fer et au champ de manœuvres de l’est. Mais ici, beaucoup s’appuyaient sur une canne : bambou ou débris de bois. On ne criait plus guère « au secours », et on ne courait plus : courir, c’était hâter sa fin».
Ayant retrouvé sa famille, mais devant fuir car l’incendie qui a suivi avait ravagé leur maison, ils décident d’aller se réfugier dans une usine de sa société et découvrent l’ampleur du désastre en essayant de traverser Hiroshima : « les cadavres gisant sur le chemin étaient moins nombreux par ici. Malgré la diversité de leurs attitudes, ils avaient cela de commun qu’ils étaient, pour plus de 80 % des cas, tombés la face contre la terre. Le seul cas exceptionnel était celui d’un homme et d’une femme tout près de la plate-forme du tramway, à l’arrêt de Hakushima : couchés sur le dos, ils avaient les pieds ramassés de manière que leurs genoux étaient dressés, et leurs mains allongées obliquement (…). Je n’avais jamais vu cela. Les cheveux et les poils étaient complètement brûlés. Seule la rondeur du sein permettait de distinguer la femme. Pourquoi étaient-ils morts dans une pose aussi étrange ? Je ne comprenais pas. Ma femme et ma nièce sont passées à côté de ces cadavres sans même leur jeter un regard ». Se retrouvant dans un train de réfugiés, ils commencent à réaliser ce qui s’est passé. « La somme des avis des voyageurs conduisait à deux conclusions différentes : selon les uns, à l’instant où l’éclair avait brillé, on avait entendu un énorme choc ; selon les autres, au même instant avait mugi une tempête ou un formidable grondement (…)
L’épicentre, au dire de tous, devait être vers le pont Chôki, et ceux qui se trouvaient dans un cercle de deux kilomètres à la ronde ne pensaient pas, disaient-ils, avoir rien entendu.
Ceux qui étaient à quatre ou cinq kilomètres du point de chute disaient avoir entendu un grondement immense quelques secondes après avoir vu l’éclair (…) Si le cumulo-nimbus de l’explosion n’avait donné l’impression d’un nuage en forme de méduse, il devait être différent selon qu’on le voyait de loin ou de près. Certains des voyageurs avaient eu l’impression d’un nuage en forme de champignon ».

Ces voyageurs font partie de la petite moitié des 300 000 personnes2 présentes à Hiroshima ce jour là qui ont survécu au bombardement atomique. Il leur faudra attendre la capitulation du Japon, après le 15 Août, pour savoir ce qui leur était arrivé ; « ils avaient d’abord appelé le pikadon « arme nouvelle » , puis « bombe d’un type nouveau », « arme secrète », « bombe spéciale d’un nouveau genre » et « bombe spéciale de grande puissance », et après tous ces changements successifs, voilà que j’apprenais aujourd’hui que cela s’appelait une bombe atomique 3 ». Si les gens ne se sont pas méfiés de l’alerte, c’est que la ville avait été épargnée par les bombardements classiques, afin de bien pouvoir mesurer l’efficacité d’une telle arme. Pourtant, dans cette ville de garnison, la marine avait installé un important état-major régional, à proximité des chantiers d’armement Mitsubishi, et l’armée de terre, son deuxième grand quartier général. En choisissant le centre ville et non les installations militaires comme point de bombardement, c’est la ville entière que les autorités américaines ont voulu détruire, les usines Mitsubishi ayant été relativement épargnées.
Avec officiellement 176 964 victimes recensées à ce jour, dont quelques milliers de travailleurs coréens et chinois déportés qui vivaient comme travailleurs forcés à Hiroshima, la bombe atomique a fait beaucoup moins de morts que le bombardement classique de Tôkyô4. Les bombardements de Hiroshima et Nagasaki5 les 6 et 9 Août 1945, qui suivirent le premier test dans le désert du New Mexico aux Etats-Unis le 16 juillet, plongèrent de façon violente l’humanité dans l’ère nucléaire. Cet évènement a marqué le début de 50 ans de course aux armements à un prix humain très élevé et mérite donc toute notre attention cette année.
C’est des victimes directes de cette course folle dont nous avons choisi de parler, de ces milliers de gens irradiés à leur insu pour des raisons de défense. Nous parlerons des cobayes humains américains et des victimes soviétiques des centres d’essais nucléaires dont il a déjà été beaucoup question dans les médias, et aussi des Français victimes des essais nucléaires Français en Algérie et dans le Pacifique. Tout ce qui touche au militaire étant très secret, il est impossible d’être exhaustif, mais les quelques exemples dont il sera question laissent présager de ce qui se passe dans d’autres pays non cités et les problèmes de prolifération nucléaire ne permettent pas d’être optimiste.
Aujourd’hui, 367 000 « atomisés » sont officiellement recensés au Japon, dont 10% environ des habitants de Hiroshima. Yasuko, la nièce de Shigematsu, victime de ma « pluie noire » écrit dans son journal : « sur une remarque d’Oncle, je me suis aperçue que j’étais couverte d’éclaboussures, comme de la boue (…). Je me suis alors souvenue qu’une pluie noire était survenue (…), ce devait être vers dix heures du matin je crois (…) la pluie noire avait cessé aussi vite qu’elle était apparue, tout à fait comme une hallucination. C’était une pluie fourbe. Je me suis lavée les mains à la source du jardin, mais j’ai eu beau frotter avec du savon, la souillure n’est pas partie ; on aurait dit qu’elle collait indissolublement à la peau ; je n’y comprenais rien (…). Je suis retournée me laver plusieurs fois à la source, mais impossible longtemps d’effacer les taches noirs. Si ç’avait été une teinture, elle aurait été d’un bon prix ! » la pluie noire était radioactive.
Bien que non « atomisée » officiellement (sinon elle aurait eu du mal à trouver un parti pour se marier), sa tante commencera quelques années plus tard le « journal de maladie » par ces lignes : « (…) horriblement souffert, assaillie de douleurs violentes qui se sont calmées parés plus de dix minutes. 38 degrés de fièvre. Quelques chutes de cheveux (…). L’abcès du fondement a percé, mais un autre s’est déclaré plus loin … » Ces milliers de victimes ont été suivies médicalement afin de connaître les effets à long terme des radiations et les résultats servent pour définir les normes de radioprotection6. « Vers l’automne suivant la fin des hostilités, une équipe de recherche de l’armée américaine d’occupation était venue dans les ruines de Hiroshima avec des médecins de l’université de Tôkyô, et peu à peu elle s’était développée en commission d’enquête, l’ « Atomic Bomb Casualty Commission », A.B.C.C., pour étudier scientifiquement les victimes du bombardement, avec un idéal de vaste envergure. Mais bien qu’on y fasse des enquêtes détaillées sur les premiers symptômes de la maladie atomique, on n’y traitait pas les victimes. »
La spécificité de l’arme nucléaire tient donc en partie dans le caractère partiellement différé de son pouvoir de destruction, qui est d’autant plus redouté qu’il est invisible. Ainsi, la zone touchée, qui peut s’étendre sur des kilomètres autour du point d’impact, en fonction de la circulation atmosphérique, peut-être stérilisée pour des siècles et plusieurs générations peuvent être affectées par des altérations génétiques. A ce titre, la photo de couverture est assez éloquente, 10 ans après, les arbres de Hiroshima, à proximité de l’épicentre, recommencent seulement à prendre vie.
Dès 1949, en pleine guerre froide, les Etats-unis se lancèrent dans la fabrication d’un engin encore plus puissant, une bombe thermonucléaire utilisant le principe de la fusion. Un premier essai a lieu en novembre 1952 sur l’atoll d’Eniwetok dans le Pacifique et leur première bombe thermonucléaire explose sur l’atoll de Bikini en Mars 1954 ; sa puissance est de 15 mégatonnes, soit environ mille fois celle lâchée sur Hiroshima. Les soviétiques, quant à eux, avaient fait détonner un premier engin au plutonium en Sibérie en 1949 et la première bombe thermonucléaire en 1953. Aujourd’hui, plus de 1860 essais nucléaires ont été effectués, dont 521 dans l’atmosphère.

2. Des cobayes humains

Dans les années 40 et 50, des centaines d’Américains ont servi de cobayes à leur insu, lors d’expérimentations médicales7. Révélé par l’enquête d’une journaliste américaine, Eileem Welsome, ce scandale a conduit à la création d’une commission d’enquête par le Président Clinton et, selon un rapport du département de l’Energie publié en Février dernier, le nombre de victimes s’élèverait à 9 000 personnes réparties sur 154 expériences. Ce chiffre sous-estime sûrement la réalité, comme le souligne Gordon Erspamer, avocat à San Francisco, qui enquête sur le sujet : « De nombreux rapports ont volontairement été omis des dossiers gouvernementaux ou enregistrés de manière édulcorée, de façon à ce que les fait réels n’apparaissent pas à quiconque les consulterait aujourd’hui ou même à l’époque ». De plus, de nombreux rapports ont été perdus ou plus ou moins volontairement égarés. « Il faut reconnaître que tout ceci est un peu dans le style du Buchenwald » a écrit le 28 Novembre 1950 K.G. Hamilton, professeur à l’hôpital de l’université de Californie et membre influent d’un groupe de médecins et chercheurs, qui a pratiqué en série des expériences sur des humains candides.
Les victimes d’injection de plutonium étaient des malades hospitalisés, et « l’espérance de vie des victimes était soigneusement évaluée. En règle générale, les sujets choisis avaient plus de 45 ans et souffraient d’affections chroniques rendant improbables qu’ils survivent plus de dix ans. En se conformant à ces critères, le risque de voir apparaître des effets tardifs des radiations serait évité. De plus, cela faciliterait l’observation des prélèvements post-mortem dans un délai de quelque mois ou, au plus de quelques années » peut-on lire dans un document de 1950. Une des premières victimes, Albert Stevens, était un peintre en bâtiment Agé de 58 ans chez qui les médecins avaient détecté une importante tumeur de l’estomac. Pensant à tort qu’il s’agissait d’une tumeur cancéreuse, ils avaient réclamé une intervention chirurgicale et quatre jours avant l’opération, ils lui injectèrent 3,5 microcuries de plutonium 238 et 0,046 microcurie de plutonium 239, ce qui correspond à une dose administrée de 11.000 rems, soit 400 fois environ la dose reçue dans une vie. Albert Stevens mourut de maladie cardiaque 20 ans plus tard, alors que Hamilton et ses collègues lui avaient enlevé la plus grande partie de la neuvième côte, l’intégralité de la rate, une grande partie du lobe gauche du foie, un morceau de pancréas, une partie du péritoine, plusieurs ganglions lymphatiques et les deux tiers de son estomac, dans le plus grand secret. Son dossier médical ne mentionne pas ces ablations et les médecins ne lui ont jamais dit que sa tumeur n’était pas cancéreuse, ni qu’ils lui avaient injecté du plutonium, terme couvert par le secret défense à l’époque. Le corps de certaines victimes fit l’objet d’analyses post-mortem jusque dans les années 70.

Les 150 habitants de l’atoll d’Utirik, dans les îles Marshall, près du site de l’essai thermonucléaire du 1er Mars 1954, ont aussi été suivis médicalement pour « (étudier) les relations entre les quantités de retombées au sol, la quantité absorbée dans la nourriture et leur corrélation aux quantités excrétées dans l’urine » nous explique aujourd’hui le professeur Merril Eisenbub, comme pour se justifier, car en 1956 il avait déclaré sans la moindre vergogne : « … à présent, on peut à nouveau vivre en sécurité sur cette île, mais c’est de loin le lieu le plu contaminé du monde, et il sera très intéressant d’y retourner (…) pour obtenir une mesure de l’accumulation chez l’homme lorsque des gens vivent dans un environnement contaminé. En fait, on n’a jamais disposé de données de ce genre. S’il est vrai que ces gens ne vivent pas, disons, comme nous les Occidentaux, les gens civilisés, il n’en reste pas moins qu’ils sont plus proches de nous que ne le sont les souris ».
Des militaires américains ont aussi été délibérément exposés à des retombées radioactives et des explosions nucléaires. Une fois, des tests visaient à étudier l’aveuglement provoqué par une telle explosion. Dans d’autres cas, des « volontaires » (comme on peut être volontaire à l’armée) étaient dans un avion faisant des cercles à quinze kilomètres du point d’impact ou volèrent à travers le champignon après avoir avalé un réactif que l’on pouvait retirer de l’estomac afin de mesurer l’irradiation interne. Des patients ont été soumis à des rayonnements intense de rayons X pouvant atteindre 300 rems au total pour tenter de comprendre le comportement de soldats victimes d’une explosion atomique. Il semblerait que, dans ce cas, les patients étaient pour la plupart pauvres, noirs et déficients mentaux.
Mais ce qui a le plus choqué l’opinion américaine, c’est le scandale lié aux enfants handicapés à qui on avait fait manger du fer ou du calcium radioactif mêlé à du lait. Dans une autre école spécialisée, près de 200 enfants reçurent de l’iode radioactif de la part de chercheurs venant de centres aussi prestigieux que Harvard ou l’université de Boston. Les substances radioactives administrées atteignirent des taux inquiétants qui auraient pu justifier un suivi médical ultérieur.
La France n’est pas en reste. Lors de ses premiers essais dans le désert Algérien, des militaires ont été exposés aux radiations et parmi eux, nombre d’entre eux sont morts, soit sur le coup, soit des années plus tard, ce que l’armée française continue de nier8. « On n’a jamais pu savoir exactement le nombre de victimes », se souvient Raymond Sené du GSIEN qui se trouvait en Algérie dans le 621e Groupement des armes spéciales. « Un officier nous avait dit, à propos des soldats proches du lieu de l’explosion : « Ce n’est pas la peine de discuter pour savoir si la dose de rayonnement qu’ils ont prise était nocive, ils étaient déjà morts… » » à la suite d’une explosion qui s’était produite dans une cuve contenant du plutonium, le 19 Avril 1962. Dix-neuf blessés sont évacués vers l’hôpital militaire de Percy où ils sont soignés dans le grand secret. Le 1er Mai 1962, lors d’un essai nucléaire français, le nuage radioactif se répand, contaminant de nombreuses personnes dont le ministre des Armées, Pierre Messmer et le ministre délégué à la recherche, Gaston Palewski qui mourra d’une leucémie en 1986, à la suite de cet accident, selon ses dires. A en croire des allégations de la télévision algérienne, 150 prisonniers algériens furent exposés au premier essai français9.
La veuve de Régis Quatrefages est convaincue que son mari, emporté par un cancer en 1988, est une des victimes de ces « incidents » de 1962 et se bat contre le secret militaire pour faire connaître la vérité. Il était présent lors des deux premières explosions, mais ne sera pas évacué car considéré comme non contaminé, et, le 28 juin 1962, il est projeté, avec six autre soldats, à plusieurs mètres à la suite d’une nouvelle explosion dans une cuve de plutonium. Evacué d’urgence à Percy où il restera 15 jours, il écrira à sa fiancée : « Malgré les consignes impératives, nous étions sans masque. Nous avons donc avalé des poussières. (…) Nous pensons servir de cobayes. Pour continuer à percer de nouveaux mystères dans l’étude des conséquences atomiques, ils vont profiter de cet accident : ils nous analysent sang, urine, crachats, ils nous remplacent le sang ». D’autres appelés confirment ce genre de témoignages, mais l’armée, qui ne reconnaît les deux premiers « incidents » que du bout des lèvres, refuse de parler de contamination et ne parle que de « morts naturelles ».

Mururoa, ou le lieu du grand secret en reo maohi, porte bien son nom. Aucune étude sur la santé des 12.000 personnes qui ont travaillé sur le site d’essai n’a été menée et les statistiques de la santé, qui étaient régulièrement publiées dans le Journal Officiel de Tahiti, cessèrent de l’être dès la construction de centre d’essai. Les autorités auraient-elles quelque chose à cacher ? Faute d’étude approfondie, nous devons nous baser sur des témoignages10. « Mon premier travail consista à gérer les déchets. Après chaque explosion, quand les spécialistes avec leurs compteurs Geiger étaient partis, nous devions nettoyer les plages de l’atoll des poissons morts et autres détritus. (…) Nous n’avions aucuns vêtements protecteurs… Aucun dosimètre pour mesurer notre exposition aux rayonnements. Les spécialistes avaient des vêtements de protection, mais nous n’en recevions pas. La seule chose qu’on nous donnait c’était des gants » raconte Ruta qui a travaillé à Mururoa pendant 12 ans, montrant ainsi que les précautions à l’égard des populations locales ne semblent pas respecter les mêmes critères que pour les populations européennes.
Les habitants des atolls environnants ne sont pas épargnés. Lors des essais atmosphériques, ils devaient se réfugier dans un abri. « La seconde fois, (…) quelque chose a dû mal se passer, parce qu’il était inhabituel de devoir passer la nuit dans l’abri, raconte Hinano, une habitante de Mangareva. Par la suite, nous avons découvert qu’il y avait eu de la contamination radioactive. Après chaque essai, les militaires faisaient le tour de l’île avec leur compteur Geiger. Normalement, il n’y avait pas de contamination, mais après Canopus il y eut contamination à Taku. Ils nous dirent de vider les citernes qui contenaient l’eau de boisson. On trouva également que les environs de l’abri étaient contaminés. Il avait plu pendant la nuit, et ceci avait sans doute lessivé la poussière radioactive du ciel sur les îles ». De telles contaminations sont confirmées par un pilote français d’hélicoptère qui est allé sur l’atoll Tureia pour prendre deux météorologistes qui étaient restés pendant le tir avec la population, et qui s’interroge : « si moi qui ai passé trois minutes à Tureia, ai dû être décontaminé, si les deux techniciens, qui y ont séjourné un mois, ont eu besoin de soins étendus, quelle dose de radiation ont pu emmagasiner les habitants de l’île ? On ne les a pas évacués, on ne leur a prescrit aucune mesure de protection pour l’avenir. Ils continuent à manger le poisson du lagon, à utiliser les palmiers et les noix de coco, à jouer avec les galets11 ». Hinano se souvient que « quand les militaires sont arrivés, la moitié de la population travaillait pour eux, soit pour la pêche, soit pour cultiver des légumes. Ils payaient très bien. Mais dès le début des essais, ils arrêtèrent d’acheter les poissons et bientôt après, ils cessèrent également d’acheter des légumes, bien qu’ils continuaient d’acheter leurs légumes à Tahiti ». Là encore, deux populations, deux normes sanitaires ? Des mesures ont bien été faites par les militaires qui étaient donc conscients de la situation. Les habitants des îlots des alentours ont-ils, eux aussi, servi de cobayes ?, c’est ce que laisse penser la suite du témoignage de Hinano : « Avant le début des essais nucléaires, beaucoup de scientifiques sont venus à Mangareva pour y collecter des échantillons de toutes sortes : sol, végétaux, animaux, poissons, eau… D’autres vinrent simplement pour observer. (…) Depuis le début des essais, les militaires sont venus au moins deux fois par an pour prélever des échantillons (…) Ils ne donnaient jamais la raison de cette collecte ni quels étaient les résultats de leurs analyses. (…) Plus tard, un autre bateau aborda notre île avec une machine à son bord appelée « spectro », (…) tout le monde dut se rassembler et monter à bord. Nous devions nous coucher sur une sorte de civière. Il y avait de la musique de fond quand on nous faisait entrer dans la machine et après quelques minutes, on nous en ressortait. Ceci fut répété deux ou trois fois. Quelques personnes étaient soupçonneuses, mais à nouveau, personne ne disait rien. Une autre équipe de médecins est venue, d’abord ce furent des personnels militaires, puis de civils. Ils prirent du sang, des urines, des selles et nous examinèrent. Si quelqu’un refusait d’aller se faire examiner, le gendarme venait le chercher.
En réfléchissant sur ce qui nous est arrivé, je suis épouvantée de la manière dont nous avons été traités. J’ai eu un bébé prématuré qu’ils ont mis dans un avion militaire pour l’hospitaliser à Tahiti. Le lendemain nous avons reçu un message disant que le bébé était mort. On ne nous a jamais rendu le corps et nous n’avons jamais eu de certificat de décès, ce qui signifie qu’officiellement, le bébé est toujours en vie. Je ne puis retrouver l’infirmière militaire qui est venue prendre le bébé – je ne sais absolument pas quoi faire. Même à présent, des années après, j’ai encore des cauchemars à ce sujet ».

Il paraît indispensable que le gouvernement français nomme une commission indépendante chargée d’enquêter sur ces expériences médicales, comme cela s’est fait aux Etats-Unis, et comme cela commence à se faire dans l’ex-bloc soviétique où les autorités ont permis à des scientifiques et journalistes de pénétrer sur le site d’essais. Cette commission devrait avoir accès à toutes les archives, y compris celles classées défense.

Le Royaume-Uni a réalisé une partie de ses essais aux îles Chrismas, en Australie, dans des conditions similaires à celles des essais nucléaire Français et Américains dans le Pacifique. Dans le désert Australien, pour prévenir les autochtones, les militaires Britanniques ont mis des panneaux interdisant le site d’essais que les Aborigènes ne pouvaient pas lire… Ces derniers ne furent donc pas informés des dangers des essais et n’ont pas été suivis médicalement. Une commission gouvernementale a révélé en 1985 que 20 kg de plutonium sont toujours disséminés dans le désert de Maralinga12.

Ces dernières années, le Royaume-Uni a testé ses bombes sur le site américain, dans le désert du Névada, près de réserves indiennes… et de Las Vegas.

Dans l’ex-URSS, le désastre prend une toute autre ampleur. Les habitants de Kaynar, un village situé à 5 kilomètres du site Semipalatinsk, au nord du Kazakhstan, où les soviétiques ont fait exploser 467 bombes nucléaires de toutes sortes pendant une quarantaine d’années, souffrent d’un taux anormalement élevé de leucémies, cancers et troubles mentaux13. Il ne s’agit là que de la partie émergée de l’iceberg dans un pays où 250 000 personnes souffrent de symptômes d’une maladie liée aux radiations, et où plus d’un million de personnes ont été exposées à des retombées nucléaires. Le gouvernement et les militaires ont refusé toute information sur la nature des essais et leurs dangers aux populations locales. Il leur était même interdit de parler des essais et de signaler à quiconque le fait qu’ils voyaient régulièrement des nuages en forme de champignon.
En Août 1953, il a été ordonné aux villageois d’évacuer les lieux, sauf pour 42 hommes qui ont été emmenés sur la colline derrière l’hôtel de ville pour regarder l’explosion et le nuage radioactif. Il ne reste qu’un seul survivant, Nuraganey Yergazhe âgé de 64 ans, 40 autres sont morts de cancer ou leucémie, bien qu’ils soient enregistrés à la mairie comme morts à la suite de maladie mentale. Les officiels reconnaissent maintenant qu’il était interdit d’identifier n’importe quelle maladie comme liée à une exposition à la radioactivité.
Encore maintenant, les militaires du Kazakhstan, restés sous commandement russe pour la partie forces nucléaires, les anciens responsables soviétiques, et le gouvernement russe continuent à nier toute contamination du village. Depuis l’effondrement du régime soviétique, la Russie insiste pour garder le contrôle su site et s’oppose à la dé-classification des documents.
C’est en Sibérie que fut développée l’industrie nucléaire militaire et civile, dans des cités secrètes dont les noms ne figurent sur aucune carte, telle Krasnïarsk-26, où une usine souterraine, dans de vastes tunnels plus étendus que le métro de Moscou, produisait du plutonium. Dans un reportage télévisé14 on a pu y voir un technicien réparer au chalumeau des fuites de conduites dans lesquelles circulent des solutions d’uranium ou de plutonium. « je n’ai aucune idée des doses de radioactivité que j’ai reçues. Très souvent, nous préférions ne pas avoir de dosimètre, car nous étions sanctionnés quand nous nous en servions », avoue un des techniciens de France 2, après le reportage. Si les conditions de travail sont inquiétantes de nos jours, elles étaient dignes de l’enfer à l’époque stalinienne où, à chaque centre nucléaire, allant de la mine au centre de recherche fondamentale, était attaché un camp de prisonniers15. Andreï Sakharov, un des pères de la bombe H soviétique décrit Gorki (ou aussi Arzamas-16) comme « une symbiose entre un institut de recherche scientifique extrêmement moderne, des usines expérimentales, des sites d’essais et un immense camp de prisonniers. (…) Les usines, les sites d’essais, les routes et les maisons des chercheurs étaient construites par des prisonniers vivant dans des baraques et escortés au travail par des chiens de garde ». Le système de camps de détention spéciaux (CDS), qui regroupait principalement des prisonniers de guerre soviétiques et des civils déportés en Allemagne par les armées d’Hitler, fut créé au sein du système général des camps. Ayant appris les méthodes de travail allemandes, ils étaient très qualifiés, et comme la reddition et le travail en captivité pour l’ennemi était un crime en Union soviétique, ils ont été affectés, pour la plupart, dans les CDS. Ni Staline, ni Khrouchtchev, ni Brejnev ne les libérèrent à l’occasion d’amnisties ou de réhabilitations.
Que ce soit à cause de la répression sévère, des conditions de travail déplorables ou des accidents, ils sont sûrement des milliers à y avoir laissé leur vie sur les millions qui ont dû travailler dans la vingtaine de sites concernés. Lors de l’explosion sur un site de stockage de déchets nucléaires de Kyshtym16 (ou Tcheliabinsk-40) qui a libéré près de 20 millions de curies de matières radioactives, Slavsky, alors ministre de la construction des machines-outils, rapporta que « les zones résidentielles des unités militaires affectées à la construction et les camps de prisonniers se trouvaient dans la zone contaminée ». Près de 7 000 de ces militaires, en fait chargés de surveiller les prisonniers, ont été exposés à des doses supérieures à 50 roentgens et durent être hospitalisés ; ces unités ont été chargées d’évacuer les populations des environs dans les jours qui suivirent, mais « l’attitude à l’égard des prisonniers fut moins clémente. Ils furent rasés, reçurent des vêtements propres et menés à marche forcée vers des camions. On leur refusa de prendre quoi que ce soit avec eux, pas même leurs carnets de notes ou des photographies de leurs proches ». Il n’existe aucun registre des « liquidateurs » de cet accident ; ils ne peuvent donc prétendre aux avantages dont bénéficient les liquidateurs qui ont décontaminé les environs de Tchernobyl. En l’absence d’accidents majeurs, on ne sait presque rien de ces CDS, dont il n’est pratiquement pas fait mention dans les rapports et les études sur le goulag. Il est fort probable que les conditions climatiques aient eu raison de nombreux prisonniers bien avant qu’ils n’aient le temps de mourir des effets des radiations.

En ce qui concerne la Chine, nous n’avons pu trouver aucun document, mais connaissant la valeur d’une vie humaine aux yeux des dirigeants chinois et les conditions de sécurité dans l’industrie, il ne fait aucun doute que la course à l’armement nucléaire s’y soit aussi faite au prix de nombreuses vies humaines. Il y a fort à parier que parmi eux figuraient des prisonniers politiques. Le centre d’essai est situé à Lop-Nor, dans la province du Xinjiang peuplée principalement de Ouigur et de 12 autres minorités nationales officielles.

1 Héro du livre Pluie noire de Masuji Ibuse ; édition Gallimard NRF. Toutes les citations suivantes sont extraites de ce livre.
2 Ces chiffres et les suivants concernant Hiroshima sont tirés d’un article du Monde daté du 25 mars 1995.
3 In pages datées du 13 Août du journal de Shigematsu. Le Monde daté du 8 Août 1945 titrait déjà en première page que les Américains avaient utilisé une bombe atomique sur Hiroshima.
4 Voir par exemple Maintenant numéro 5, 8 mars 1995. Tôkiyô était en bois et a disparu sous 700 000 bombes le 9 Mars 1945.
5 C’est la ville de Kita-Kyûshû qui était visée, mais pour cause de mauvais temps, c’est Nagasaki qui a été bombardée.
6 cf ACROnique du nucléaire numéro 27
7 La Recherche 275 Avril 1995 vol. 26. Les citations et les informations sur les cobayes américains sont tirées de cet article.
8 Le Canard Enchaîné, 11 janvier 1995, les exemples et les citations qui suivent sont tirés de cet article.
9 AFP, 11 Mai 1985, repris dans les essais nucléaires français, 1960-1988, Greenpeace/Damoclés
10 Témoignages. Essais nucléaires français : Des polynésiens prennent la parole, Green-peace/damoclès. Sauf indication contraire, tous les témoignages qui suivent sont tirés de ce livre.
11 La bombe ou la vie, Jean Toult, Fayard, 1969
12 Témoignages op. cit.
13 The Japan Times Weekly, vol 35, n°5, 4 Février 1995
14 Envoyé spécial, 9 Mars 1995, France 2
15 La Recherche 271 décembre 1994 vol. 25. Un terrifiant article sur l’atome au goulag dont sont tirées les informations et les citations qui suivent.
16 Voir Désastre nucléaire en Oural de J.A. Medvedev, éd. Isoète, 1988, au sujet de cet accident.

Trafic de biens de consommation radioactifs : l’ACRO appelle à la vigilance !

Papier peint, draps, serviettes hygiéniques… radioactifs vendus sur le thème du bien-être et de la santé ! L’ACRO appelle à la vigilance face à ce qui ressemble à une vaste escroquerie.

Tous ces produits, commercialisés en Corée pour le papier peint, en voie d’être importés en Espagne pour les draps et vendus en France pour les serviettes hygiéniques, contiennent de la radioactivité naturelle dite renforcée, c’est à dire qui a été concentrée. Ils sont supposés favoriser la présence d’anions, des ions négatifs qui seraient source de bien-être.
De telles pratiques sont illégales en Europe ! L’addition de radioactivité dans les biens de consommation et l’alimentation est interdite.
En l’espace de quelques mois, l’ACRO a eu à expertiser différents produits commercialisés sous l’appellation « Anion » : parfois, rien d’anormal n’a été trouvé, mais plusieurs d’entre eux contiennent de la radioactivité rajoutée.

Voir les résultats et la présentation des biens concernés

 

Les irradiations médicales ne sont pas inoffensives

Communiqué ACRO du 02/07/13

L’ACRO pratique régulièrement une veille scientifique concernant les risques liés aux radiations ionisantes. Aujourd’hui, l’association souhaite attirer l’attention des médias et de l’opinion sur une nouvelle étude scientifique qui concerne les irradiations médicales et leurs conséquences potentielles. Cette étude met en évidence une augmentation de 24% de l’incidence des cancers chez les enfants qui ont subi un ou plusieurs scanners. Elle met aussi en évidence l’apparition de ces effets à partir d’une dose voisine de 4,5 millisieverts (4,5 mSv), ce qui est dix fois plus faible que ce qui est communément admis.

 Une équipe de recherche australienne de l’Université de Melbourne vient de publier[1], dans le prestigieux British Medical Journal, une étude cherchant à évaluer le risque de cancer chez les jeunes enfants et les adolescents ayant subit des examens diagnostiques par scanner. Cette étude porte sur les expositions de scanographies reçues par des jeunes âgés de 0 à 19 ans durant la période allant de 1985 à 2005 et suivis jusqu’en décembre 2007.

Les auteurs observent une augmentation de +24% de l’incidence des cancers apparus au sein de la cohorte « exposée », composée de 680 221 individus, par rapport à une cohorte témoin de jeunes n’ayant pas subi de scanners. Cette sur-incidence de cancers est tout à fait significative sur le plan statistique et elle augmente parmi les classes d’âge plus jeune (+35% parmi la classe d’âge de 1 à 4 ans). L’étude met aussi en évidence que le risque de cancers augmente avec la dose. Cela constitue également un argument de poids lorsque l’on cherche à établir une telle relation de causalité.

Les cancers pris en compte correspondent à ceux enregistrés sur la période de suivi qui est de 9,5 ans en moyenne pour l’ensemble de la cohorte. Les chercheurs ne peuvent donc, à ce stade, déterminer les conséquences sur la vie entière des individus ayant fait l’objet de ces examens de scanographie. Compte-tenu de ce que l’on connaît des délais d’apparition des cancers radio-induits, il est raisonnable de penser que cet excès devrait s’amplifier.

Cette étude survient moins d’un an après la publication[2], dans The Lancet, d’une étude anglaise qui a fait couler beaucoup d’encre dans la presse spécialisée.

Mark S Pierce et al ont mené cette étude rétrospective sur une cohorte de 178 604 patients (issus de 81 services hospitaliers de Grande Bretagne), sur la période 1985-2002, ayant globalement subit 283 919 scanners. Les chercheurs ont étudié précisément les expositions (doses à la moelle osseuse et au cerveau) dues aux examens scanographes et reçues avant l’âge de 22 ans. Ils ont, bien-entendu, aussi pris en compte une période de latence.

Les auteurs mettaient en évidence que plus la dose de scanographie estimée était élevée, plus le risque de développer un cancer du cerveau ou une leucémie était élevé.

En outre, en répartissant la cohorte des jeunes exposés en deux groupes de niveaux de dose, ils démontraient un risque relatif 3 fois plus élevé des leucémies, d’une part, et des cancers du cerveau, d’autre part, dans le groupe des individus ayant reçu les doses plus élevées.

Ces études se distinguent des études précédentes qui cherchaient à estimer, de façon pronostique, le risque de cancer lié à des examens radiologiques sur la base de modèles de risque. Il s’agit bien ici de cancers effectifs diagnostiqués et non de cancers « théoriques ».

Les modèles de risque actuellement utilisés reposent encore largement sur le suivi des survivants de Hiroshima et Nagasaki pour lesquels la relation dose / risque de cancer est établie à partir de 50 mSv et plus.

Dans l’étude australienne la dose moyenne liée à un examen scanographique est de 4,5 mSv. C’est donc 10 fois moins que le niveau de dose pour lequel un risque accru de cancer est établi. Dans l’étude anglaise, les doses sont établies plus précisément et sont du même ordre de grandeur. Il faut souligner l’importance numérique de la cohorte des personnes exposées de l’étude australienne.

Ces données scientifiques nouvelles constituent une réponse à tous ceux qui, en lien avec les accidents de Tchernobyl et de Fukushima, tentent de présenter la valeur de 100 mSv comme un seuil d’innocuité ou, tout du moins, comme une valeur en-dessous de laquelle aucun effet des radiations ionisantes ne serait observable. Ellesnous confortent dans la bataille que l’ACRO mène de longue date pour un nouvel abaissement des limites réglementaires, tant pour les travailleurs exposés que pour le public.

Par ailleurs, sur le plan médical, sans remettre en cause l’intérêt que représentent les outils diagnostiques mettant en œuvre des rayonnements ionisants, il est essentiel que les actes prescrits soient pleinement justifiés et que tout soit mis en œuvre pour réduire les doses délivrées, tout particulièrement en radiologie pédiatrique.

L’ACRO est régulièrement sollicitée par des patients inquiets devant subir des examens mettant en œuvre des rayonnements ionisants. En réponse à ces questionnements, nous avons publié dans la revue l’ACROnique du nucléaire (n°101 de Juin 2013) un article dans lequel nous faisons le point sur cette question des expositions médicales et des risques associés et au terme duquel nous développons en 8 points précis notre point de vue.

 

Liens vers les études :

http://www.bmj.com/content/346/bmj.f2360

http://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2812%2960815-0/abstract

 


[1] John D Mathews et al. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. British Medical Journal, published online may 22, 2013.

[2] Mark S Pearce et al.Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours : a retrospective cohort study.The Lancet,published online june 7, 2012.

Le risque lié aux radiations ionisantes sans cesse revu à la hausse

ACROnique du nucléaire n°95 – décembre 2011


Dès la découverte des rayons X, par Wilhelm Conrad Röntgen en 1895, et celle de la radioactivité, par Henry Becquerel en 1896, les conséquences néfastes des radiations ionisantes vont se révéler très vite.

En 1928, le 2nd Congrès international de Radiologie donne naissance au « Comité international de protection contre les Rayons X et le Radium » qui deviendra par la suite la Commission Internationale de Protection Radiologique, l’actuelle CIPR dont les recommandations inspirent très largement les réglementations nationales et internationales. A l’issue de ce congrès seront promulguées les premières restrictions concernant les professions médicales.

Les premières recommandations de la CIPR seront publiées en 1934. C’est cette même année (en décembre 1934) que seront édictés, en France, les premiers textes réglementaires en radioprotection où seront promulguées les premières valeurs limites d’exposition pour les travailleurs.

Celles-ci ne cesseront d’évoluer dans le sens d’une réduction de ces valeurs en relation avec l’acquisition des nouvelles connaissances sur l’action des radiations. Les valeurs limites sont aujourd’hui réduites d’un facteur 30 par rapport à celles instituées à l’origine (voire d’un facteur 50 par rapport aux premières restrictions).

Après avoir défini des limites par jour, puis par semaine, plus tard par trimestre, les limites d’exposition furent ensuite fixées sur un pas de temps annuel, y compris pour le public[1].

Une nouvelle étape importante apparait en 1990 avec la publication de la CIPR-60 qui recommandera (pour simplifier) un nouvel abaissement des limites réglementaires d’un facteur 2,5 pour les travailleurs et d’un facteur 5 pour le public[2].

Depuis cette avancée majeure de 1990, d’autres évolutions se profilent soulignant que, par certains aspects, le risque radio-induit demeure sous-estimé.

Le risque Radon réévalué

C’est d’abord la réévaluation du risque lié à l’exposition au radon domestique. Sur la base d’une approche épidémiologique – déduite des données issues des mineurs extrayant l’uranium – la CIPR proposait un coefficient de risque que les modèles dosimétriques contredisaient. Mais la démonstration directe d’une relation causale entre radon domestique et cancer du poumon sera apportée vers 2005 avec la publication de trois grandes études épidémiologiques de grande envergure qui apportent des résultats très cohérents.

La CIPR a donc dû réviser sa copie. Dans un projet de nouvelles recommandations (juillet 2010), elle proposerait des facteurs de conversion en dose – du risque radon exprimé en dose efficace – qui correspondent à un risque plus que doublé (augmentation de 2,26 pour le public et de 2,35 pour les travailleurs). Dès lors, la commission propose un abaissement par un facteur 2 de ses valeurs de référence pour les niveaux de radon dans les habitations, se rapprochant ainsi des récentes propositions de l’OMS.

Le risque de cataracte réévalué

La cataracte fut une des pathologies radio-induite identifiée très tôt et démontrée expérimentalement dans les années qui ont suivi la découverte des rayons X. On les décrivit aussi chez des travailleurs exposés à des neutrons autour des premiers cyclotrons (1949) et chez les survivants d’Hiroshima et Nagasaki vers la même époque.

Mais l’idée communément admise était qu’il fallait de fortes expositions aux radiations, de l’ordre de 2 à 10 Gy (gray) selon la nature et le mode d’exposition. Dés lors, l’induction de la cataracte radio-induite est classée parmi les effets déterministes (retardés) ce qui signifie qu’elle ne peut apparaître qu’au-delà de certains seuils de dose (> 2 Gy en exposition aigüe, 4 Gy en exposition fractionnée et plus encore en exposition chronique).

Mais ces dernières années, des publications dans le champ de l’épidémiologie exposent des résultats qui remettent en cause cette vision optimiste et suggèrent des seuils de dose nettement plus faibles pour l’apparition des cataractes. De plus, ces études portent sur des populations aussi diverses que les astronautes, les pilotes de lignes, les survivants d’Hiroshima-Nagasaki[3], des patients ayant subi un scanner céphalique, des personnels en radiologie (tout particulièrement en radiologie interventionnelle), les « liquidateurs » de Tchernobyl, des enfants de la région de Tchernobyl…

Bref, l’existence même d’un seuil n’est plus vraiment une certitude dans la mesure où cette pathologie pourrait être plus le résultat d’une altération cellulaire, notamment génomique (conduisant à un effet stochastique) que d’un dommage tissulaire (effet déterministe).

Des données scientifiques récentes ont conduit la CIPR – fin avril 2011 – à revisiter le risque radio-induit pour certains effets déterministes, en particulier le cristallin. Désormais, la Commission considère que le seuil de dose absorbée au cristallin doit être maintenant fixé à 0,5 Gy (mais toujours classé comme effet déterministe).

Elle en tire comme recommandation qu’il faut maintenant réduire fortement les limites réglementaires d’exposition concernant le cristallin. En particulier, pour les expositions professionnelles, la CIPR recommande une limite de dose équivalente au cristallin de 20 mSv par an (pouvant être moyennée sur 5 ans mais sans dépasser 50 mSv sur une année).

Déjà, le projet de Directive-cadre européenne vient de prendre en considération ces recommandations. Dès lors, avec la transposition de cette future directive UE, les limites réglementaires devraient, à minima, évoluer comme indiqué dans le tableau ci-dessous :

Evolution attendue des limites réglementaire pour le cristallin

Public

Travailleurs (catégorie A)

Limite de dose
équivalente actuelle

15
mSv

150
mSv

Limite de dose
équivalente future

15
mSv

20
mSv

Commentaires

Si la CIPR a eu une attitude exemplaire en 1990 (avec la parution de la CIPR-60), elle apparait aujourd’hui en retrait d’avancées nécessaires pour une meilleure prise en compte des données scientifiques dans le système actuel de protection radiologique. Celles-ci portent en particulier sur la révision du facteur d’efficacité de dose et de débit de dose mais aussi sur les facteurs de pondération des radiations, notamment pour les émetteurs bêta de faibles énergies ou encore les rayons X de faibles énergies.

Il convient aujourd’hui d’aller vers un abaissement généralisé de toutes les limites réglementaires tant pour les travailleurs que pour le public. Nous aurons l’occasion de revenir sur cette question d’actualité.

Le 6 novembre 2011
Pierre Barbey
Conseiller scientifique de l’ACRO


[1] Les premières recommandations CIPR pour des limites pour le public seront proposées au milieu des années 1950. Elles se traduiront dans la réglementation française en 1966 (décret du 20 juin 1966).

[2] Ces nouvelles limites réglementaires seront transposées en droit français dans différents textes parus en 2001, 2002 et 2003.

[3] Réévaluation publiée en 2004.

Ancien lien

Livre blanc sur le tritium

Contribution de l’ACRO au livre blanc sur le tritium publié par l’Autorité de Sûreté Nucléaire, juillet 2010


Alors que des experts internationaux recommandent de revoir à la hausse l’impact sanitaire du tritium, les rejets en tritium des installations nucléaires ont tendance à augmenter significativement.

L’ACRO qui surveille cet élément depuis des années dans l’environnement, fait pression pour que ces nouvelles données sur son impact soient prises en compte et que les rejets diminuent. Ainsi, elle a participé activement aux deux groupes de travail mis en place par l’Autorité de sûreté nucléaire et a contibué au livre blanc publié sur le sujet.

Les deux textes de l’ACRO dans le livre blanc sont :

Par ailleurs, la synthèse de ces travaux fait clairement apparaître le point de vue de l’ACRO quand il était divergent de celui des exploitants et des autorités. Le livre blanc complet peut être consulté en ligne ici :
http://livre-blanc-tritium.asn.fr

Ancien lien

Le Tritium : un risque sanitaire sous-estimé

Pierre BARBEY, ACROnique du nucléaire n°85, juin 2009


Le Tritium [3H] ou [T] est l’isotope radioactif de l’hydrogène [H]. A ce titre, il peut se substituer aux atomes d’hydrogène qui constituent l’un des quatre éléments fondamentaux (avec le carbone, l’azote et l’oxygène) de la matière organique, donc des corps vivants.
Le Tritium rejeté dans l’environnement, sous forme d’eau tritiée [HTO] ou sous forme de gaz (tritium et méthane), sera incorporé par les espèces vivantes de plusieurs façons.
– par inhalation,
– par transfert cutané,
– par ingestion.
En dehors des expositions professionnelles, c’est la voie ingestion qui est le mode d’exposition nettement dominant pour le public.
L’eau tritiée incorporée par un organisme vivant se comporte de manière identique à l’eau constitutive de cet organisme (un peu plus de 70% chez l’homme à plus de 90 % dans certaines espèces végétales et animales) et se répartit dans tout le corps.
Parmi les espèces végétales, plantes en milieu terrestre et phytoplancton en milieu aquatique, l’activité de photosynthèse conduit à l’incorporation d’eau tritiée [HTO] dans des molécules organiques [OBT] (Organically Bound Tritium ou tritium organiquement lié).
Ensuite, par ingestion, les espèces vivantes (et l’homme en bout de chaîne alimentaire) incorporent du Tritium sous forme d’eau tritiée mais également sous forme de tritium organique.

Les effets biologiques

Les radiations ionisantes agissent sur le vivant à travers deux modes d’action :

–    l’effet direct qui se traduit par des ruptures dans les liaisons covalentes, ce qui signifie qu’elles « cassent» des molécules. Ainsi de telles cassures sur des molécules d’ADN conduiront soit à des altérations de gènes, soit à des délétions ou aberrations chromosomiques (pouvant entraîner la mort de la cellule).

–    l’effet indirect qui conduit à la production de radicaux libres (espèces chimiquement toxiques) à partir de la radiolyse de molécules d’eau. L’action prépondérante de ces espèces radicalaires sur l’ADN constituera des lésions chimiques potentiellement mutagènes et/ou cancérogènes.

Les rayonnements ionisants agissent au hasard. Aussi, au sein d’une cellule, toute molécule peut être la cible de leur action. Cependant, en raison du rôle central du patrimoine génétique dans le fonctionnement cellulaire, les lésions portées sur l’ADN seront responsables de l’essentiel des dégâts biologiques observés. Ils induisent dans la matière irradiée des événements initiaux (ionisations, excitations) pratiquement instantanés (de l’ordre de 10-15 sec.) mais dont les conséquences pathologiques éventuelles peuvent n’apparaître que plusieurs années ou décennies plus tard (risque cancérogène), voire dans la descendance (risque génétique).

Certes, des mécanismes de réparation existent et une cellule altérée peut « se débarrasser» d’anomalies radio-induites. Dans d’autres situations, l’anomalie n’est pas réparée ou elle est mal réparée ce qui conduira à une cellule toujours vivante mais comportant une (ou des) mutation(s) susceptible(s) de s’exprimer tardivement : risque de cancers ou d’effets génétiques qui définissent les « effets stochastiques [1] ».

Enfin, lorsque les doses sont élevées, les dégâts induits dans une cellule sont tels qu’ils entraînent la mort de la cellule par nécrose. Quand, dans un tissu ou un organe, un grand nombre de cellules sont ainsi atteintes, c’est le tissu même ou l’organe qui est alors gravement affecté : on parle alors « d’effets déterministes [2] ».

Les atomes radioactifs [3H] se désintègrent en émettant des rayonnements particulaires bêta (β-) qui se caractérisent par l’énergie cinétique qui leur est associée. Comme toutes radiations ionisantes, les rayonnements β- du tritium ionisent la matière (arrachent des électrons) et c’est ce phénomène qui, fondamentalement, explique les dégâts biologiques qui en découlent. Par conséquent, la description des effets biologiques potentiels dus au tritium ne se distinguent pas des effets radio-induits dus à d’autres corps radioactifs.
La compréhension globale de ces lésions induites à l’échelle moléculaire et de leurs conséquences biologiques possibles sont résumés dans l’encadré ci-contre.

Compte-tenu de la nature des rayonnements émis par le tritium (bêtas de faible énergie), il n’y a aucun risque d’exposition externe. Aussi, en-dehors d’expositions professionnelles accidentelles, le risque pour le public exposé à des rejets de tritium dans l’environnement est un risque d’exposition interne à des doses faibles mais reçues de façon chronique. C’est donc le risque d’effets stochastiques qui est à considérer ici.

Le système de radioprotection

En tant qu’isotope de l’hydrogène, le tritium est bien un élément toxique en raison exclusivement de sa nature radioactive. N’en déplaise à ceux qui, inlassablement, cherchent à le distinguer des autres substances radioactives pour mieux le banaliser. En fait, le débat qui s’est instauré depuis plusieurs années dans une partie de la communauté scientifique viserait plutôt à réévaluer à la hausse le risque radio-induit qui est affecté au Tritium [3].

Dans le système de radioprotection actuel, le risque radio-induit est construit pour l’essentiel à partir des conséquences observées sur les survivants de Hiroshima et de Nagasaki qui ont subi une exposition externe à des rayonnements (principalement des photons) de façon aigüe. Quelques cohortes de patients et de travailleurs exposés ont permis de préciser le modèle de risque.

Lorsqu’il s’agit d’une contamination interne chronique, le système de radioprotection (développé par la CIPR [4]) vise à quantifier le dépôt d’énergie (dû aux substances radioactives incorporées) en le moyennant par tissu ou par organe. Il intègre en outre un coefficient de correction (appelé facteur de pondération, WR) pour tenir compte de la nature du rayonnement, essentiellement de la densité d’ionisation qu’il produit dans la matière. Par analogie (portant sur les doses équivalentes aux tissus ou aux organes), les coefficients de risques radio-induits issus d’Hiroshima-Nagasaki sont appliqués de la même façon aux situations de contaminations internes.

Le risque lié au tritium est sous-estimé

Cette approche simplificatrice ne tient pas compte de l’hétérogénéité, en particulier à l’échelle cellulaire, du dépôt d’énergie produit par les rayonnements bêta du tritium du fait de son faible parcours dans la matière vivante. Ce parcours de l’ordre du micron (0,6 µm en moyenne et 6 µm au maximum), nettement inférieur au diamètre moyen d’une cellule, peut conduire à ce qu’une quantité d’énergie importante soit déposée dans l’ADN si l’atome de tritium est localisé au niveau de la chromatine. Cette question est en outre accentuée par une densité d’ionisation élevée due aux bêtas du tritium [tableau n°1] comparativement aux rayonnements de référence (gamma du cobalt-60 ou rayons X de 250 kV) censés représenter le rayonnement externe produit lors des explosions nucléaires.

Tableau n°1 : Dépôt d’énergie par unité de parcours dans la matière
Bêtas
[3H]
Ray. X (250
kV)
Gammas [60Co]
Transfert linéique
d’énergie (keV/µm)
4,7 1,7 0,22

Il s’agit là, sans doute, d’une des raisons principales qui expliquent la toxicité particulière du tritium.
En effet, de nombreux travaux scientifiques ont été réalisés pour évaluer les effets biologiques du tritium par comparaison à ceux obtenus à partir des rayonnements de référence. Ils sont très largement concordants pour exprimer, à dose absorbée égale, une radiotoxicité clairement plus élevée du tritium par rapport aux rayonnements de référence. A travers ces expérimentations, les auteurs calculent un coefficient d’efficacité biologique (EBR) qui est le rapport des dégâts biologiques induits par les bêtas du tritium sur ceux induits par les photons (X ou gamma). Ce rapport est souvent voisin de 1,5 à 2 (par comparaison aux rayons X) et de l’ordre de 2 à 4 (par comparaison aux rayons gamma). De tels résultats sont cohérents avec une approche biophysique qui conduit à un EBR théorique de 3,75.

Parmi ces expérimentations, celles qui présentent un intérêt prépondérant sont celles qui étudient des cibles biologiques telles que l’induction de cancers ou des anomalies chromosomiques car elles correspondent aux effets stochastiques. Dans ce cas-là, les EBR servent à construire les facteurs de pondération WR. Or, la CIPR a fixé arbitrairement un WR = 1 pour les rayonnements bêta quels qu’ils soient. Concrètement, de ce seul point de vue, cela signifie que le risque radio-induit dû au tritium est sous-évalué d’au moins un facteur 2 à 4.

Par conséquent, toujours pour ce seul argument évoqué ici, les coefficients de dose par unité d’incorporation (CDUI) établis pour le Tritium [tableau n°2] devraient être corrigés à minima par ce même facteur. Ces coefficients permettent de calculer la dose efficace reçue par un individu (en Sv mais plus souvent en mSv ou µSv) à partir de la connaissance de l’activité incorporée (en Bq de tritium).

Tableau n°2 : Coefficient de dose efficace engagée par unité incorporée par ingestion (Sv.Bq-1) pour la population (Directive 96/29/Euratom du 13 mai 1996)
Forme chimique ≤ 1 an 1-2 ans 2-7 ans 7-12 ans 12-17 ans adulte
Eau tritiée 6,4.10-11 4,8.10-11 3,1.10-11 2,3.10-11 1,8.10-11 1,8.10-11
OBT 1,2.10-10 1,2.10-10 7,3.10-11 5,7.10-11 4,2.10-11 4,2.10-11

Incorporation de produits organiques tritiés et modèle biocinétique CIPR

D’autres questions relatives à la toxicité du tritium laissent suggérer que la sous-estimation du risque lié à ce radioélément pourrait être plus importante encore.
Le modèle biocinétique pour l’eau tritiée et les composés organiques tritiés est décrit pour le travailleur dans la Publication 78 de la CIPR (1997). Il est représenté par 2 compartiments représentant l’eau totale du corps (A) et l’ensemble de la matière organique (B). Il suppose que 97% de l’eau tritiée [tableau n°3] est en équilibre avec l’eau du corps et est retenu avec une demi-vie de 10 jours, le restant étant incorporé dans les molécules organiques et retenu avec une demi-vie de 40 jours. Pour les composés organiques du tritium [tableau n°4], 50% de l’activité est retenu avec la période biologique de l’eau libre (10 jours) et 50% avec la période biologique du carbone organique (40 jours).

Tableau n°3 : DonnéesTableau n°3 : Données biocinétiques pour l’eau tritiée (HTO) selon la CIPR
Compartiment Fraction
incorporée (%)
Période
biologique (jours)
A 97 10
B 3 40
Tableau n°4 : Données biocinétiques pour le Tritium organiquement lié (OBT) selon la CIPR
Compartiment Fraction
incorporée (%)
Période
biologique (jours)
A 50 10
B 50 40

Le modèle CIPR est mis en défaut par de récentes expérimentations où des rats ont été nourris avec du poisson prélevé dans la Baie de Cardiff (fort marquage en tritium libre et organique). De même des volontaires, ayant consommé des soles de cette région et qui ont été suivis pendant 150 jours, ont globalement confirmé les résultats. Le modèle CIPR sous-estime l’incorporation dans la matière organique et sa rétention dans le corps comme l’indique le tableau suivant :

Tableau n°5 : Données biocinétiques pour le Tritium organiquement lié (OBT)
Compartiment Fraction
incorporée (%)
Période
biologique (jours)
A 30 10
B 70 100

D’autres auteurs, qui proposent un modèle alternatif multicompartimental, considèrent également que le modèle de la CIPR sous-estime la concentration en tritium organique présente dans le corps après incorporation.
L’ingestion de produits organiques tritiés est un facteur aggravant qui peut être parfois très élevé. Ainsi des auteurs ont pu montrer que la thymidine tritiée est environ 10.000 fois plus radiotoxique que l’eau tritiée. D’autres ont observé que l’arginine tritiée, qui est très rapidement incorporée dans l’embryon de souris, est encore plus radiotoxique pour cet élément (au stade de blastocyste).

La transmutation du tritium et l’effet isotopique

Deux autres raisons théoriques viennent renforcer les raisons plausibles qui peuvent expliquer l’existence de EBR presque toujours supérieurs à 1 avec le tritium.
Tout d’abord, lorsqu’un atome [3H] se désintègre en émettant une particule bêta, il se transforme en [He] (hélium). Pour le tritium organique, cette transmutation conduit à la formation d’un carbone ionisé. Des expérimentations portant sur l’incorporation de bases pyrimidiques [5] tritiées dans différents types de cellules ont démontré un rôle mutagène de cette transmutation. Des auteurs utilisant de la thymidine tritiée sur des cellules humaines ont pu établir que 31% des ruptures monocaténaires produites sur l’ADN seraient associées à ce phénomène de transmutation.
Par ailleurs, la différence de masse atomique entre des isotopes d’une même famille conduit à ce qui est communément appelé un « effet isotopique ». La différence de masse entre le tritium et l’hydrogène (un facteur 3) est susceptible de produire un effet discriminant entre ces deux éléments. Des données scientifiques plus récentes suggèrent une concentration renforcée de tritium au niveau de la couche d’hydratation intimement liée à l’ADN. Sans être du tritium organiquement lié au sens usuel, Baumgartner et collaborateurs ont clairement montré un enrichissement d’eau tritiée liée à des macromolécules (par comparaison à l’eau libre dans la cellule). Cet enrichissement en tritium est d’un facteur 1,4 pour l’eau d’hydratation des protéines et d’un facteur 2 pour l’eau d’hydratation de l’ADN.

En conclusion

Il y a 10 ans déjà, lors d’un colloque de la SFRP [6] centré sur le tritium, l’ACRO était intervenue pour demander que soit réévalué le risque associé au tritium notamment en prenant mieux en compte les EBR définis expérimentalement. Nous n’avons pas cessé de porter sur la place publique les nouvelles données de la littérature scientifique et d’interpeler les pouvoirs publics face aux tentatives de banalisation des rejets de tritium dans l’environnement. Depuis l’ASN a créé deux groupes de travail sur ce thème. L’ACRO a accepté d’y participer et se bat pour une réévaluation du risque radio-induit lié au tritium. L’histoire nous donnera raison.


[1] Effets aléatoires (expression probabiliste) qui apparaissent tardivement et dont la probabilité d’apparition augmente avec la dose de façon linéaire et sans seuil. Habituellement, ce type d’effet est mis en évidence à travers des études épidémiologiques.

[2] Effets obligatoires au-delà d’un seuil de dose (propre à chaque effet observé), d’apparition généralement précoce et dont la gravité dépend de la dose reçue.

[3] Radiation protection n°152. Emerging issues on Tritium and low energy beta emitters. 2008.
Report of AGIR. Review of risks from Tritium. 2007.

[4] Commission Internationale de Protection Radiologique. Groupe d’experts internationaux qui produit régulièrement des recommandations en matière de radioprotection.

[5] Base azotée dérivant de la pyrimidine, qui entre dans la composition des nucléotides, des acides nucléiques.

[6] Société Française de Radioprotection

Ancien lien

Du rôle de la pectine dans l’élimination du césium dans l’organisme

ACROnique du nucléaire n°67, décembre 2004


Nous présentons ici les analyses faites sur des enfants biélorusses avant et après leur séjour en Normandie à l’invitation de l’association “Solidarité Biélorussie-Tchernobyl”. Les analyses d’urine ont été effectuées par l’ACRO, alors que les analyses anthropogammamétriques ont été faites sur le corps entier à l’Institut Belrad de Minsk.

A trois exceptions près, tous les enfants sont contaminés par du Césium 137 du fait de la contamination de leur environnement par l’accident de Tchernobyl.

Les analyses sur les urines ne sont pas corrélées aux analyses anthropogammamétriques sur le corps entier. La contamination des urines, bien qu’utilisant une méthode de mesure plus précise, fluctue beaucoup d’un cas à l’autre. Cela peut s’expliquer par la différence entre les urines du matin ou celles de la journée par exemple. Mais aussi par la prise de pectine qui peut accélérer l’élimination pendant un laps de temps donné. Les urines ne sembleraient pas, a priori, être un indicateur fiable de l’évolution de la contamination de l’enfant, sauf si on arrivait à corriger l’incertitude par un autre indicateur. Mais cela dépasse nos compétences et pour le moment, les urines ne sont qu’un témoin de la contamination de l’enfant.

Habituellement, lors de leur séjour en Normandie, les enfants biélorusses reçoivent un traitement à la pectine pour accélérer l’élimination du césium. Cette année, faute de fonds suffisants, seule une partie des enfants a pu être traitée. Cela va nous permettre d’étudier l’importance du rôle de la pectine.

En moyenne, les enfants ayant reçu un traitement à la pectine ont vu leur contamination au Césium 137 baisser de 37% contre 15% en moyenne pour les enfants non traités. Il apparaît donc que la pectine accélère bien l’élimination du césium. A noter que pour deux cas, on constate une baisse de 100%, ce qui est peu plausible et est probablement lié au fait que la limite de détection n’était pas atteinte. Si on retire ces deux cas litigieux, on obtient alors une baisse moyenne de 31% pour les enfants traités à la pectine.

Dans la littérature scientifique, c’est la période de décroissance qui est généralement utilisée. Elle correspond au temps nécessaire à une diminution de moitié de la contamination par élimination biologique et décroissance radioactive. Pour les enfants n’ayant pas reçu de pectine, on trouve qu’il faut 119 jours pour que leur contamination moyenne diminue de moitié. Alors que pour les enfants ayant reçu de la pectine, il ne faut plus que 42 jours (52 jours si on enlève les deux cas litigieux avec une décroissance de 100%). La contribution de la pectine se traduit donc par une période d’élimination de 65 jours (ou 92 jours si on enlève les deux cas litigieux). Cette valeur est plus longue que les 20 jours annoncés par le Pr. Nesterenko qui commercialise la pectine [1]. De même, sans pectine, la période est plus longue que les valeurs retenues par la CIPR-56 pour des enfants. La CIPR (Commission Internationale de Protection Radiologique) considère plusieurs périodes en fonction de la partie du corps considérée (plasma, muscle…). Notre résultat s’approche de la plus longue période retenue pour les adultes qui est de 110 jours pour la partie musculaire.

Les anthropogammamétries sont réputées surestimer les résultats pour des valeurs inférieures à 1000 Bq (ou 33 Bq/kg pour un enfant de 30 kg) [2]. Il y a là un biais qui pourrait conduire à un allongement artificiel des périodes déduites des mesures car à la fin du séjour en Normandie de nombreuses valeurs sont sous ce seuil.

Les périodes de décroissance permettent de calculer la contamination des enfants en fonction de scénarios de consommation de produits contaminés. En supposant, par un exemple, simpliste que les enfants incorporent quotidiennement la même quantité de césium notée Q, alors, leur contamination sera égale à Q.T/ln2. Ainsi leur contamination sera d’autant plus faible que la quantité incorporée sera faible ou que la période d’élimination, T, sera faible. D’après nos résultats, cette période est de 2 à 3 fois plus faible avec un traitement à la pectine que sans. La contamination des enfants sera donc aussi 2 à 3 fois plus faible avec ce scénario qui implique une ingestion quotidienne de pectine. Cependant, la pectine n’est distribuée que lors de 3 cures par an pour des raisons médicales (effets secondaires) et de coûts. Dans de telles conditions, son effet sera donc beaucoup plus réduit.

Une politique de prévention est donc une démarche efficace. L’action de l’ACRO en Biélorussie vise plutôt à tenter de diminuer à la source l’ingestion de césium en favorisant la mise en place d’un réseau de mesure directement en lien avec la population. Nous espérons ainsi mettre en place des comportements alimentaires issus de stratégies efficaces de réduction de l’ingestion de césium 137.

En conclusion, ces résultats font apparaître que le césium 137 serait éliminé moins vite que ce qu’a retenu la CIPR dans ses modèles. Nous notons aussi que la pectine accélèrerait effectivement l’élimination du césium, mais moins vite que ce qui est annoncé par ses promoteurs. D’autres stratégies de réduction de la contamination à la source sont donc tout à fait pertinentes. Les deux approches sont complémentaires et contribuent à la diminution de la contamination des enfants.

D’un point de vue politique, la pectine est ignorée par les milieux officiels de la médecine et de la radioprotection sous prétexte que son efficacité n’est pas prouvée. Mais aucune étude n’est menée… De l’autre côté, certaines associations qui font la promotion de la pectine critiquent avec virulence toute autre démarche basée sur la prévention. Dans un tel contexte, nos résultats sont importants, mais malheureusement pas assez robustes pour pouvoir tirer des conclusions définitives. Ils montrent plutôt la nécessité d’études plus poussées sur le sujet.

Références :
[1] V.B. Nesterenko et al, Reducing the 137Cs-load in the organism of « Chernobyl » children with apple-pectin, Swiss Med wkly, 134 (2004) p. 24
[2] M. Schläger et al, Intercalibration and intervalidation of in-vivo monitors used for whole-body measurements within the framework of a German-Belarussian project, IRPA 11 (May 2004), Madrid, paper ID 839 (on CD ROM)

Anthropogammamétrie
réalisée par Belrad
Dosage du Cs137 dans les urines par l’ACRO
numéro pectine 02/06/2004Bq/kg 30/06/2004Bq/kg 07/06/2004Bq/L 27/06/2004Bq/L
1 non 29,16 28,43 <2,8 2,9±1
2 non 31,96 25,81 9,3±4 <2,8
3 oui 65,40 30,13 40,0±6,6 31,3±5,6
4 oui 29,07 24,80 13,8±3,3 8,8±3,5
5 oui 15,40 10,52 8,0±2,7 4,9±2,1
6 oui 26,15 17,12 13,0±2,8 11,0±3,5
7 oui 0,00 0,00 <2,4 /
8 oui 33,52 20,16 <2,4 /
9 oui 33,55 24,05 5,5±2,3 <4,0
10 non 34,13 28,85 10,4±2,9 9,1±3,8
11 non 54,30 31,20 29,6±4,1 14,6±3,5
12 oui 31,10 19,60 15,4±3,3 4,3±2,1
13 oui 46,83 30,57 20,13,2 20,0±4,4
14 non 34,46 20,55 10,5±2,8 3,6±1,8
15 oui 41,00 37,30 18,5±4,7 <4,4
16 oui 38,23 0,00 7,2±2,5 <4,4
17 oui 47,36 32,85 <6,0 /
18 oui 52,69 28,56 40,2±6,9 5,4±1,5
19 oui 38,71 0,00 <3,2 /
20 oui 31,50 20,41 16,3±4,7 <2,8
21 oui 91,52 62,58 64,4±7,9 36,8±6,8
22 oui 23,07 13,21 <3,6 /
23 oui 51,04 40,98 25,1±4,2 17,3±4,7
24 non 0,00 0,00 <2,4 /
25 non 32,98 29,30 <14,0 /
26 oui 25,16 18,95 <5,2 <2,8
27 oui 25,21 18,59 <5,6 /
28 oui 29,97 21,27 7,0±2,7 5,3±2,5
29 non 35,63 33,19 <3,2 6,5±3,0
30 non 12,89 10,22 <4,8 /
31 non 12,48 10,88 6,2±2,2 <5,2
32 non 27,69 26,42 18,6±4,7 <3,2
33 non 21,04 17,81 <3,2 /
34 oui 65,56 51,52 37,6±6,4 31,4±5,5
35 non 29,54 28,15 <5,2 /
36 non 30,91 26,21 6,6±2,1 8,3±2,7
37 oui 87,81 56,73 61,9±7,3 23,2±4,1
38 non 10,45 10,36 <5,2 /
39 oui 0,00 0,00 <5,2 /
40 non 37,83 37,57 8,0±2,2 4,7±2,1
41 non 46,84 29,40 7,9±3,2 12,2±3,0
42 oui 44,08 35,15 33,4±6,2 17,3±3,8
43 non 37,90 35,40 12,3±3,4 <2,0
44 non 29,25 25,20 6,4±3,0 /
45 non 18,80 15,50 8,5±2,6 /
46 non 49,51 37,22 13,5±4,5 8,7±2,6
47 non 39,03 35,49 19,6±4,2 15,1±3,4

Ancien lien

Les risques liés au Tritium rejeté dans l’environnement sont sous-estimés

Communiqué de presse du 18 mars 2008

De nombreuses études scientifiques récentes conduisent à réévaluer la radiotoxicité du https://www.acro.eu.org/cp180308.htmltritium (hydrogène radioactif) qui est rejeté en grande quantité par les installations nucléaires. En Grande-Bretagne, le très officiel Advisory Group on Ionising Radiation (AGIR) vient de franchir le pas en proposant de multiplier par deux le facteur de risque pour cet élément.

D’autres études tendent à montrer que, contrairement à ce qui est admis actuellement, le tritium rejeté dans l’environnement tend à s’accumuler sous forme organique dans la chaîne alimentaire. Ainsi, des poissons plats de la baie de Cardiff sont 1000 à 10000 fois plus contaminés que l’eau de mer analysée pour le même site.

Alors que la loi du 28 juin 2006 relative à la gestion durable des matières et déchets radioactifs, impose aux autorités françaises « la mise au point pour 2008 de solutions d’entreposage des déchets contenant du tritium permettant la réduction de leur radioactivité avant leur stockage en surface ou à faible profondeur » et que la France s’apprête à accueillir sur son sol le réacteur expérimental ITER qui va générer d’importantes quantités additionnelles de tritium, l’ACRO demande que l’impact environnemental et sanitaire du tritium soit réévalué avant toute décision.

L’association demande en particulier
–    à la CIPR (Commission Internationale de Protection Radiologique) de procéder très rapidement à un réexamen de la toxicité du tritium à partir des connaissances actuelles ;
–    que la surveillance des rejets tritiés des installations nucléaires soit améliorée en prenant plus en compte la mesure du tritium organiquement lié ;
–    que le tritium ne soit plus systématiquement rejeté dans l’environnement ;
–    que des recherches soient menées pour améliorer la connaissance sur l’impact de cet élément sur l’environnement et la santé.

L’ACRO (Association pour le contrôle de la Radioactivité dans l’Ouest) s’est rapidement dotée de moyens de laboratoire pour contrôler les niveaux de Tritium dans l’environnement autour des sites nucléaires depuis presque 20 ans. Grâce à cette action de surveillance citoyenne, notre association a pu notamment alerter sur les fortes contaminations en Tritium qui perdurent depuis plus de 30 ans dans les nappes phréatiques situées sous le Centre de Stockage de la Manche mais aussi sur l’incapacité à gérer de telles situations compte tenu de l’extrême mobilité de ce radioélément.
Cette préoccupation forte s’explique, d’une part, par le fait que l’industrie nucléaire produit des quantités très importantes de ce produit radioactif et, d’autre part, parce qu’il est entièrement libéré dans l’environnement.  L’ACRO continuera à suivre ce dossier de très près.


Les éléments d’information qui suivent ont pour objet de présenter les grandes lignes des enjeux scientifiques actuels relatifs au Tritium.

Le Tritium est l’isotope radioactif de l’hydrogène auquel il se substitue au cours de processus métabolique. C’est un émetteur bêta de faible énergie (Emax = 18,6 keV).
Les autorisations de rejets dans l’environnement accordées à l’industrie nucléaire sont importantes :

  • 5.000 GBq (rejets gazeux) et 60.000 GBq (rejets liquides) pour 2 réacteurs nucléaires (EdF Flamanville)
  • 150.000 GBq (rejets gazeux) et 18.500.000 GBq (rejets liquides) pour les installations de retraitement (AREVA NC-La Hague)
  • 90.000 GBq sous forme de rejets gazeux prévus pour ITER

1 GBq = 1 milliard de Becquerel

La solution de facilité dans la gestion d’un déchet radioactif (ici le Tritium), qui consiste à le traiter par un simple rejet banalisé dans l’environnement, est justifiée par les exploitants nucléaires qui insistent sur sa « très faible radiotoxicité ».

Des études de plus en plus nombreuses soulignent cette sous-estimation du risque.

Il y a d’abord l’approche biophysique. Les radiations émises par le tritium sont traitées comme le sont les rayonnements pénétrants (radiations gamma) alors que le dépôt d’énergie s’effectue sous forme de traces courtes (où le dépôt d’énergie est plus grand) et très hétérogènes à l’échelle cellulaire (problème de microdosimétrie qui favorise la formation de site de liaisons multiples plus difficilement réparables).
Il y a ensuite l’approche radiobiologique. Des effets sont insuffisamment pris en compte. C’est d’abord « l’effet isotopique » où il apparaît dans certaines expérimentations que le tritium serait intégré de façon privilégiée par rapport à l’hydrogène et ceci en raison de sa masse. Le rôle joué par les molécules d’eau en interaction étroite avec l’ADN, où un enrichissement en Tritium est maintenant démontré, suggère que les effets sur le patrimoine génétique seraient plus importants que prévu.
En radioprotection, on utilise des paramètres qui permettent d’estimer le risque radio-induit (par exemple l’induction de cancers) en corrélation avec la dose d’exposition. Parmi ceux-ci figurent un paramètre important, le coefficient d’efficacité biologique relatif (EBR). Pour les radiations émises par le Tritium, l’EBR est toujours pris égal à 1. Pourtant, dans de nombreux travaux concernant des altérations graves du patrimoine génétique (atteinte biologique importante quand on s’intéresse au cancer radio-induit), l’EBR est le plus souvent calculé entre 2 à 3, et jusqu’à 8 dans certaines études. Cela signifie concrètement que, pour ce seul aspect du problème, le risque lié au Tritium est déjà sous-estimé par un facteur 2 à 3.
Enfin, il faut également retenir que lorsqu’un atome de Tritium se désintègre, il se transforme en hélium ce qui conduit à la perte d’un hydrogène au sein d’une molécule. Ce phénomène, appelé « transmutation nucléaire », a des conséquences biologiques dans la cellule qui sont encore mal appréciées (en particulier les mutations générées).

Enfin, s’agissant des rejets dans l’environnement et de l’exposition des populations, un autre élément dans l’évaluation des risques apparaît aujourd’hui sous-estimé ; c’est la question des transferts du Tritium dans les milieux aquatiques. Toutes les études d’impact sanitaire qui sont menées considèrent qu’il n’y a pas concentration du Tritium au travers de la chaîne alimentaire. Techniquement, les auteurs retiennent un facteur de concentration égal à 1 (cela signifie que la teneur en Tritium dans une espèce biologique est égale à sa teneur dans l’eau). Or depuis le début des années 2000, des études en radioécologie décrivent très clairement ce que les auteurs appellent un phénomène de « bioaccumulation ». De même, la surveillance menée par les autorités anglaises dans la zone maritime proche de Sellafield (usine de retraitement des combustibles usés) souligne des teneurs en Tritium dans les poissons les mollusques et les crustacés 10 fois supérieures à celles de l’eau de mer. En outre, lorsque le Tritium est incorporé (par processus biologique) dans des molécules organiques, ce phénomène est considérablement accentué comme le montrent les concentrations en Tritium dans les poissons de la baie de Cardiff (où les teneurs en Tritium dans les poissons sont de 1000 à 10000 fois supérieures à celles de l’eau de mer).

Toutes ces considérations prises globalement vont dans un même sens : il y a une réelle sous-estimation du risque lié au Tritium. Certes, même après réajustement, le Tritium restera moins radio-toxique que d’autres radioéléments (tels le Strontium-90 ou le Plutonium-239), mais il faut rappeler que ce radioélément est produit par l’industrie nucléaire en quantités considérables, sans cesse croissantes et que d’autres apports dans l’environnement sont attendus (ITER…).

Actuellement, le Canada lance une enquête publique spécifiquement consacrée au Tritium et à la révision de sa norme dans les eaux potables. Sur le plan international, des groupes d’experts revisitent le risque associé à ce radioélément. C’est donc bien un enjeu réel.

Notre association, l’ACRO, souhaite que plusieurs orientations soient prises sans délai par les entités et autorités compétentes :

  • il est essentiel que la Commission Internationale de Protection Radiologique (CIPR) procède très vite à un réexamen de son modèle biocinétique relatif au Tritium par une démarche qui aille dans le sens du principe de précaution ;
  • des travaux de recherche doivent être engagés pour renforcer rapidement les connaissances dans les différents domaines (précédemment évoqués) portant sur les volets biophysique et radiobiologique mais également sur les transferts dans l’environnement ;
  • la surveillance de l’environnement autour des sites nucléaires doit être améliorée (en particulier par le mesure du tritium organiques dans les différentes matrices de l’environnement ;
  • à terme, les exploitants nucléaires, tenant compte des nouvelles données de la littérature et des réexamens par les groupes d’experts, doivent reprendre leurs évaluations d’impact sanitaire concernant les risques liés au Tritium.

Ancien lien