Archives du mot-clé Tritium
Centre de Stockage de la Manche : 45 ans de rejets de tritium dans le ruisseau Ste Hélène
Le tritium « c’est naturel », mais dans La Hague, il est « surnaturel ». Cet isotope de l’hydrogène est généralement observé à 0,2 Bq/L dans l’eau des océans, et à environ 1 Bq/L dans les eaux continentales, hors influence d’installations nucléaires.
Dans l’environnement du Centre de Stockage de la Manche (CSM), le tritium est, pour le moins, à des concentrations beaucoup plus élevées.
Il est courant de l’observer à plus de 100 Bq/L dans l’eau du ruisseau Ste Hélène plusieurs semaines de suite. Pourtant, depuis 2003, les arrêtés d’autorisation de rejet des exploitants ANDRA et AREVA prescrivent de ne pas dépasser les 100 Bq/L en concentration hebdomadaire de tritium dans la Ste Hélène.
Ainsi, les données de l’ANDRA font apparaître une concentration de 109 à 283 Bq/L durant six semaines en 2014. C’était 100 à 250 Bq/L durant 24 semaines consécutives en 2006, 32 semaines à plus de 100 Bq/L en cette même année 2006 !
Selon nos estimations, en 2014, les « relâchements » vers ce seul cours d’eau ont représenté plus de 90% des 86 GBq (milliard de becquerels) de tritium rejetés par le CSM dans l’environnement. Pour une raison incompréhensible, l’intégralité de ces « relâchements » dans la Ste Hélène sont ignorés du décompte officiel des rejets du centre.
Cette situation perdure depuis les années 70 avec l’arrivée de déchets contenant du tritium sur le site qui a entraîné rapidement une pollution massive des nappes phréatiques.
Les eaux souterraines ainsi polluées contaminent depuis 45 ans les résurgences, cours d’eau, puits chez des particuliers, abreuvoirs, avoisinants.
Recommandations de l’ACRO
L’ACRO considère que la réglementation doit être strictement respectée en matière de limites de rejets dans les ruisseaux de La Hague, et que l’on doit avoir la même considération pour le domaine public que pour le domaine de l’exploitant AREVA où une pratique d’assainissement est mise en place.
C’est pourquoi l’ACRO préconise d’épurer enfin la contamination des nappes phréatiques en pratiquant un pompage de la nappe dans la zone Nord du CSM.
Commentaires
Un premier commentaire doit nous interpeller quant au traitement – pour le moins différencié – de situations de pollutions radioactives de l’environnement et, en particulier des nappes phréatiques.
Ainsi, Le 10 septembre 2014, le tribunal de police de Dieppe a condamné EDF à 10 000 euros d’amende pour une fuite de tritium détectée en octobre 2012 dans un piézomètre de contrôle de la centrale nucléaire de Penly (Seine-Maritime). Un écoulement dans la nappe phréatique avait engendré des traces de tritium à des concentrations comprises entre 34 et 60 Bq/L, pour un taux habituel de 8 Bq/L dans ce même tube de contrôle [ASN2013].
Cette jurisprudence « EDF » détonne dans l’environnement du CSM. Ainsi, en 2014, le taux de tritium dans certains puits de contrôle est à plus de 80 000 Bq/L (PZ131). En 2013, l’eau recueillie dans un des bacs de surveillance du réseau de drainage profond était à un taux de 5 410 000 Bq/L (BR088)… Loin des 34 à 60 Bq/L dans un puits de contrôle de Penly.
Sur le plateau de La Hague ces taux de tritium de 34 à 60 Bq/L ne sont pas rencontrés de manière incidente dans les nappes phréatiques, mais en permanence dans les eaux de surface (40 à 400 Bq/L)
Un second commentaire démontre une fois de plus que l’information reste diffusée de façon très partielle.
Suite à un questionnement porté par cette étude ACRO, à l’occasion d’une réunion de travail CLI – exploitants le 11 mars 2016, nous avons appris que les piézomètres de la zone Nord-Est du site AREVA ont été fortement contaminés par un pompage industriel dans cette zone.
Les données recueillies dans notre étude situent cet évènement en 2001, il y a 15 ans. Cet évènement, identifié par les exploitants et sans doute connu des autorités, était totalement ignoré par les CLI AREVA la Hague et CSM, malgré un questionnement de l’ACRO sur la non-publication des données sur un piézomètre en 2009, dont le comportement tritium était aberrant.
Malgré la publication de la loi dite TSN en 2006 (Transparence et Sûreté Nucléaire)
La « transparence » est perfectible.
Pour la zone Sud-Ouest sur le domaine AREVA, l’efficacité d’un tel pompage a été démontrée dès la mi-1992 par le pompage en EVT7 (60 000 m3/an). Le taux de tritium dans les piézomètres de cette zone AREVA, en périphérie du CSM, est inférieur à 100 Bq/L en 2014.
L’arrêt de la centrale à béton en 1990 avait entraîné une brusque augmentation du taux de tritium au droit de l’ex point de pompage (50 000 Bq/L en 1992).
Trois générations d’armes nucléaires
Mis en avant
Fiche technique extraite de l’ACROnique du nucléaire n°46, septembre 1999
Dans cette fiche technique, nous allons tenter de décrire simplement les principes de base des bombes atomiques et montrer les liens avec l’industrie nucléaire. Nous nous limiterons à des principes généraux. Une fois la bombe fabriquée, il faut pouvoir la déployer, la contrôler, la protéger… puis démanteler les bombes et les installations devenues obsolètes et dépolluer les sites contaminés. Selon les audits atomiques indépendants effectués en France et aux Etats-Unis cela représente plus de la moitié des coûts engagés, mais cela dépasse largement notre propos.
Un peu de physique
La Fission
La fission du noyau d’éléments lourds naturels comme l’uranium ou artificiels comme le plutonium entraîne un dégagement d’une grande quantité d’énergie et de particules, comme les neutrons. Cette fission peut être déclenchée par le choc d’un neutron. Une réaction en chaîne se développe alors : la fission émettant des neutrons qui déclenchent d’autres fissions qui vont émettre d’autres neutrons… Si le nombre de neutrons produits est inférieur au nombre de neutrons consommés ou qui s’échappent, la réaction va s’éteindre d’elle même, sauf si elle est entretenue par un apport extérieur de neutrons. Si le nombre de neutrons créés est supérieur au nombre de neutrons consommés, alors la réaction s’emballe et conduit à une explosion. Dans le cas de réactions nucléaires, l’emballement est très rapide et l’énergie dégagée immense, d’où l’intérêt que lui portent les militaires. Enfin, si le nombre de neutrons créés est égal au nombre de neutrons consommés ou s’échappant, la réaction va s’auto-entretenir. Ce régime, dit critique, est celui qui a lieu dans les réacteurs nucléaires. En cas d’explosion, on parle de régime sur-critique et, dans l’autre cas, de régime sous-critique. Les isotopes impairs de l’uranium et du plutonium sont plus facilement fissibles que les isotopes pairs quand ils sont soumis à un flux de neutrons thermiques, comme dans les réacteurs nucléaires classiques, mais avec des neutrons rapides, présents dans les surgénérateurs ou les bombes, tous les isotopes du plutonium ont pratiquement les mêmes propriétés. On appelle masse critique la quantité de matière fissile minimum nécessaire à la sur-criticité.
L’uranium naturel ne contient que 0,72% d’U235, celui qui est le plus fissible, le reste étant essentiellement composé d’U238 qui ne convient pas. Pour faire une arme il faut augmenter cette proportion jusqu’à 80-93%, en utilisant un processus industriel, l’enrichissement, qui est le même que celui utilisé pour la production de combustible civil où la proportion d’U235 varie de 3 à 5%. C’est l’usine de Pierrelatte (d’abord CEA puis COGEMA) qui se charge de cette opération. Le plutonium est produit dans des réacteurs nucléaires par bombardement d’uranium 238 par des neutrons et doit ensuite être extrait du combustible irradié par un processus industriel identique à celui de la technologie civile, à savoir le retraitement. En fonction de la technologie du réacteur et du temps d’irradiation on obtiendra un pourcentage plus ou moins élevé de Pu239, qui est le favori des militaires. Les autres isotopes sont issus de bombardements successifs du Pu239 par des neutrons, quand ils nâentraînent pas une réaction de fission. Pour avoir un pourcentage élevé de Pu239, il suffit d’irradier moins longtemps du combustible dans n’importe quel réacteur nucléaire. Les réacteurs qui fonctionnent à l’uranium naturel en produiront plus. Le manteau des surgénérateurs comme Phénix et ou Superphénix, c’est-à-dire les barres de combustibles qui sont à la périphérie, permet aussi de produire du Pu239 de bonne qualité.
La Fusion
La fusion de deux noyaux légers dégage une plus grande quantité d’énergie, mais il faut comprimer beaucoup plus les gaz utilisés pour que la réaction puisse avoir lieu. Dans les armes thermonucléaires, c’est la fusion du tritium (H3) avec le deutérium (H2) qui est utilisée ; elle produit de l’hélium plus un neutron. L’avantage c’est que ces gaz sont légers et qu’une faible masse est suffisante pour dégager une énergie énorme. La difficulté est liée à l’allumage, des explosifs chimiques classiques n’étant pas suffisants pour atteindre la compression nécessaire.
Le tritium est aussi produit dans des réacteurs nucléaires par bombardement du lithium 6 par un neutron. Le Lithium 6, lui, est présent dans la nature, mais il doit être séparé de son isotope, le lithium 7. En France, c’est la COGEMA qui se charge de cette opération dans son usine de Miramas. L’ensemble du processus de production du tritium reste géré par le CEA dans deux réacteurs à eau lourde (Célestin 1 & 2 à Marcoule). Le deutérium, quant à lui, nécessite de l’eau lourde pour sa fabrication, qui a été importée de Norvège, des Etats-Unis, mais aussi fabriquée en France dans deux usines pilotes qui ne fonctionnent plus (Toulouse et Mazingarbe, Nord). Le site de production du deutérium gazeux à partir d’eau lourde n’est pas connu clairement. Il est possible que le deutérium soit produit au centre civil du CEA de Grenoble, mais également qu’il soit extrait du processus d’extraction du tritium à Marcoule.
Première génération
Les armes de première génération n’utilisent que la fission de noyaux lourds. Deux masses sous critique d’uranium sont regroupées ou une masse de plutonium ou d’uranium est brusquement comprimée à l’aide d’un explosif chimique afin d’en faire une seule masse sur-critique. La réaction en chaîne est généralement amorcée par une source de neutrons qui doit être parfaitement synchronisée avec le passage au régime sur-critique pour avoir le meilleur rendement, mais cela n’est pas une nécessité. Les bombes sud-africaines étaient amorcées par les neutrons du bruit de fond. La puissance de la bombe peut être améliorée grâce à un matériau réflecteur de neutrons, comme le béryllium. Il est relativement facile de fabriquer une bombe atomique de première génération, à condition que l’on possède la matière fissile. Les Etats-Unis n’ont jamais testé la bombe à l’uranium enrichi avant de la larguer sur Hiroshima et n’ont fait qu’un seul essai pour celle au plutonium avant de bombarder Nagasaki. Une équipe de 400 personnes environ a été suffisante à l’Afrique du Sud pour construire six bombes à l’uranium enrichi. La fin des essais nucléaires ne supprime donc pas le risque de prolifération horizontale, à savoir l’émergence de nouvelles puissances nucléaires ou la menace d’un groupe terroriste qui se serait procuré la matière première au marché noir. Une importante question concerne l’utilisation de plutonium issu des réacteurs civils à eau sous pression pour fabriquer ce type d’arme. Pour les partisans du retraitement du combustible irradié, le Pu 240 est indésirable car il risque de déclencher une implosion avant même que la sur-criticité soit atteinte, réduisant ainsi la puissance de la bombe. Cela peut même être un avantage pour fabriquer une bombe rudimentaire, car il nây a pas besoin de source de neutrons pour initier la réaction. Même de puissance réduite, une telle bombe peut faire beaucoup de dégâts. Un autre inconvénient avancé pour le plutonium civil est que le pourcentage de Pu238 est trop élevé (environ 2%, pour environ 0,01% pour du Pu dit militaire). D’une durée de vie relativement courte (88 ans), la désintégration du Pu 238 entraîne un échauffement qui peut endommager les explosifs chimiques. Si la bombe larguée sur Nagasaki avait contenu 2% de Pu 238, elle aurait eu une température de l’ordre de 250°C. Cette montée en température peut néanmoins être réduite des deux tiers à l’aide d’un système de refroidissement en aluminium. Enfin, le troisième argument avancé par les promoteurs du retraitement est que le plutonium civil est beaucoup plus irradiant, entraînant un risque beaucoup plus élevé pour les personnes travaillant à proximité. L’utilisation de cobayes humains par les puissances nucléaires pour tester les effets de la radioactivité laisse penser que cet argument n’est pas forcément un inconvénient majeur… (Note: cette discussion est tirée d’un article de Frank von Hippel, Fissile material security in post-cold-war world, Physics Today, june 1995 et de A.B. Lovins, Nuclear weapons and power-reactor plutonium, Nature, Vol. 283, 28 fev. 1980, p. 817).
Les bombes larguées sur Hiroshima et Nagasaki, avaient respectivement une puissance de 15 et 22 kilotonnes d’équivalent TNT (Note : 1kt = 1012 cal = 4,18 x 1012 J). Les armes à fission pure développées par la suite ont atteint plusieurs dizaines de kilotonnes.
Deuxième génération
Le principe des armes thermonucléaires est simple à comprendre, même si leur réalisation pose de gros problèmes technologiques. Dans les armes à fission dopées (boosted fission), une réaction de fission similaire à celle de l’arme de première génération, déclenche une réaction de fusion du cœur constitué d’un mélange de tritium (H3) et de deutérium (H2). Les neutrons dégagés par la réaction de fusion entraînent une réaction de fission plus complète que celle qui a lieu dans les armes de première génération où une faible portion de la matière fissile est consommée. La performance d’une telle arme dépend essentiellement de l’explosion chimique initiale car il est important que le gaz soit suffisamment comprimé et ne se mélange pas avec le matériau fissible. Cela peut être testé sans enclencher de réaction nucléaire et reste donc possible dans le cadre du “traité d’interdiction des essais nucléaires”, à condition d’avoir une installation permettant d’étudier l’hydrodynamique de l’explosion à l’aide de rayons X : c’est un des buts de l’installation AIRIX du CEA, en construction à Moronvillier, sur le site où ont lieu les essais nucléaires froids. Il est généralement admis qu’Israël, l’Inde et le Pakistan ont atteint ce stade. A noter qu’avec cette technologie, le plutonium, dit de qualité civile, ne change rien, quant à la puissance de l’explosion, mais le plutonium militaire est généralement préféré pour des problèmes de température et de radioactivité. Dans les bombes thermonucléaires ou bombes à hydrogène, une bombe à fission, éventuellement dopée, déclenche l’explosion par réaction de fusion. C’est un mélange de lithium et de deutérium enfermé dans une capsule tampon d’uranium ou de plomb qui est utilisé, le tritium nécessaire à la réaction de fusion étant directement produit lors de l’explosion par le bombardement des neutrons. Il n’y a virtuellement pas de limite à la puissance dégagée par ce type d’arme ; l’essai nucléaire le plus puissant de l’histoire, avec 60 Mégatonnes (60.000 kilotonnes) dâéquivalent TNT due à 97% à la réaction de fusion, a eu lieu en URSS en octobre 1962. Mais, sachant que la puissance dégagée lors de l’explosion est de l’ordre de 1kt/kg, il est possible de faire beaucoup de dégâts avec une bombe de quelques kg. Des efforts constants de miniaturisation ont eu lieu afin de rendre la bombe plus légère et transportable par toutes sortes de vecteurs, en particulier des missiles intercontinentaux.
Il a fallu de longues années de recherche aux Etats-Unis et en URSS pour mettre au point ce type d’armes (Note : voir le dossier de Physics Today, Nov. 1996) ; mais une fois les principes de base connus, il est possible dâaccéder rapidement à cette technologie : la Chine a testé sa première bombe thermonucléaire après seulement 3 essais de première génération, un essai à fission dopée et un essai préliminaire de bombe à hydrogène. Les armes de deuxième génération sont d’une technologie plus élaborée et, malgré deux milliers d’essais nucléaires, le mécanisme n’est pas encore entièrement compris. Les puissances nucléaires déclarées sont probablement arrivées au bout des améliorations possibles et possèdent une bonne maîtrise de la production de ce type d’armes. La fin des essais nucléaires n’est donc pas trop pénalisante pour elles, mais est certainement un frein pour les autres pays. Il est peu probable que de telles armes disparaissent car elles sont sûres et très mortelles. Les réductions effectuées dans les arsenaux concernent essentiellement des armes obsolètes ou dâune utilité devenue douteuse. Le tritium et le Li6 deviennent des éléments stratégiques qui doivent être contrôlés comme les matières fissibles pour éviter la prolifération.
Troisième génération
La troisième génération regroupe des bombes basées sur les technologies précédentes, mais dont certains effets sont accentués ou réduits selon l’utilité stratégique recherchée. Par exemple, la bombe à neutrons, qui émet une grande quantité de neutrons avec une puissance réduite, est supposée être efficace contre une avancée massive de chars. Son utilité tactique est en fait réduite. D’autres améliorations visent à réduire les “effets collatéraux” de la radioactivité émise, là aussi avec des succès limités. A noter que ces améliorations constituent une entorse à la doctrine de dissuasion, étant un premier pas vers une bombe pouvant être utilisée sur le champ de bataille. Ces armes nécessitent de nombreux développements scientifiques et technologiques et l’arrêt des essais nucléaires est un frein à leur développement.
Les différents types de têtes nucléaires en service dans l’arsenal français (1960-1998)
AN: fission Pu ; MR : fission dopée Pu ; TN : thermonucléaire (Tiré du site du CDRPC)
Pour en savoir plus
Cette fiche technique est basée sur les références suivantes (sauf les références déjà indiquées) :
* Bruno Barillot, Audit atomique, CDRPC, 187, montree de Choulans, 69005 Lyon (fevrier 1999)
* Stephen I. Schwartz editor, Atomic Audit, Brookings Institution Press, 1775 Massachusetts Ave., N.W. Washington, D.C. 20036 (1998)
* Andre Gsponer et Jean-Pierre Hurni, Fourth generation of nuclear weapons, Technical Report, INESAP, c/o IANUS, Darmstadt University of Technology, D-64289 Darmstadt (mai 1998)
* The military critical technology list, part II : weapons of mass destruction technologies, section V : nuclear weapon technology, Department of Defence, Etats-Unis, fevrier 1998, peut être téléchargé à l’adresse suivante : http://www.dtic.mil/mctl/
Etude des niveaux de radioactivité dans les environs du centre de stockage CSFMA de l’Aube (2012-2013)
Réalisée à la demande de la CLI de Soulaines, cette étude poursuit le travail engagé en 2007 qui avait pour but de dresser un premier bilan environnemental après quinze années d’exploitation du centre de stockage des déchets radioactifs de l’Aube (CSA). Cinq ans plus tard, l’objectif est ici de suivre l’évolution des niveaux de radioactivité rencontrés et de permettre, à partir de nouvelles investigations, d’en élargir la connaissance.
A cette fin, le travail s’est articulé en 4 volets complémentaires visant à connaitre la situation radiologique actuelle et d’en évaluer les évolutions :
- Volet 1 : Mesures dans l’environnement aquatique et terrestre du CSA et dans ses environs,
- Volet 2 : Evaluation des niveaux d’irradiations autour du périmètre de l’installation nucléaire,
- Volet 3 : Implantation de végétaux aquatiques afin d’évaluer la qualité radiologique des eaux de surface,
- Volet 4 : Bio-surveillance réalisée par les abeilles au travers de l’analyse des produits de la ruche.
Accès au rapport de cette étude :
Rapport de l’étude 2012-2013 (volets 1,2 et 3)
Volet 4 (2012-2017) :
Rapport du volet 4 Biosurveillance par les abeilles (2017)
Etude des niveaux de tritium dans les eaux souterraines du Centre de Stockage de la Manche
Résumé non technique
Le suivi de la qualité radiologique des eaux souterraines au droit du Centre de Stockage de la Manche (CSM) constitue un élément essentiel de la surveillance du site. A cette fin, les eaux prélevées à l’intérieur d’un puits de contrôle (piézomètre) se doivent d’être représentatives de l’aquifère concerné au moment du prélèvement.
Dans le cadre de la surveillance réglementaire du site, les prélèvements sont réalisés par l’ANDRA pour chaque piézomètre à une même profondeur, sans purge préalable de la colonne d’eau. Il existe donc une incertitude sur les données fournies par l’exploitant liée à la méthode de prélèvement retenue.
C’est pourquoi, la CLI du CSM a souhaité lancer une étude afin de déterminer si la contamination en tritium est homogène en fonction de la profondeur ou stratifiée et, par extension, de tester la méthode de prélèvement retenue par l’exploitant.
Cette étude a porté sur une sélection de 8 piézomètres dans lesquels un échantillonnage a été réalisé sur quatre profondeurs définies, dont celle sondée habituellement par l’exploitant.
Afin d’étudier l’influence éventuelle de la hauteur de nappe, dont les variations décrivent un cycle annuel, les prélèvements ont été renouvelés chaque trimestre pendant une année.
L’étude réalisée sur l’année 2012 montre que :
Sept piézomètres étudiés sur huit présentent une stratification notable des niveaux de tritium sur l’ensemble de sa colonne d’eau. Les différences observées peuvent atteindre un facteur 87 entre deux profondeurs successives et un facteur 250 le long d’une même colonne d’eau. Cette stratification varie au cours de la l’année.
Cette constatation montre qu’un prélèvement à une profondeur donnée, comme le fait l’exploitant, ne peut être représentatif de l’aquifère étudié et n’apporte donc qu’une information partielle de la situation radiologique présente.
Toutefois si l’existence avérée d’une non homogénéité des niveaux de tritium le long d’une même colonne d’eau a pu être mis en évidence ici, un tel phénomène reste difficile à interpréter. Une poursuite du travail sur une période plus longue complétée par des investigations complémentaires sur un nombre plus important de strates pourrait permettre d’affiner ces premières conclusions.
Pour voir l’intégralité de l’étude ACRO, réalisée à la demande de la Commission Locale d’Information du Centre de Stockage de la Manche, cliquez ici
Pour voir la présentation faite devant la Commission Locale d’Information du Centre de Stockage de la Manche, cliquez ici
Ancien lien
Concentration anormale en tritium dans l’eau de mer à proximité de l’usine Areva
Livre blanc sur le tritium
Contribution de l’ACRO au livre blanc sur le tritium publié par l’Autorité de Sûreté Nucléaire, juillet 2010
Alors que des experts internationaux recommandent de revoir à la hausse l’impact sanitaire du tritium, les rejets en tritium des installations nucléaires ont tendance à augmenter significativement.
L’ACRO qui surveille cet élément depuis des années dans l’environnement, fait pression pour que ces nouvelles données sur son impact soient prises en compte et que les rejets diminuent. Ainsi, elle a participé activement aux deux groupes de travail mis en place par l’Autorité de sûreté nucléaire et a contibué au livre blanc publié sur le sujet.
Les deux textes de l’ACRO dans le livre blanc sont :
Par ailleurs, la synthèse de ces travaux fait clairement apparaître le point de vue de l’ACRO quand il était divergent de celui des exploitants et des autorités. Le livre blanc complet peut être consulté en ligne ici :
http://livre-blanc-tritium.asn.fr
Appel à s’opposer à l’augmentation des rejets radioactifs dans l’environnement
Version pdf avec une annexe technique
Communiqué de presse commun du 16 février 2010
Les associations de protection de l’environnement participant à la CLI de la centrale de Flamanville se sont regroupées pour lancer un appel à s’opposer à l’augmentation des rejets en tritium de la centrale nucléaire.
En contradiction avec les engagements internationaux de la France et le principe constitutionnel de précaution, les autorités s’apprêtent à autoriser l’augmentation de rejets radioactifs des installations nucléaires pour un radioélément dont la radiotoxicité est revue à la hausse.
Le tritium, hydrogène radioactif, est presque entièrement rejeté dans l’environnement par les installations nucléaires. Réputé « peu radiotoxique », sa nocivité est revue à la hausse au niveau européen. Les autorités britanniques ont même franchi le pas en faisant leurs les conclusions d’un groupe d’experts qui préconisait de multiplier par deux cette radiotoxicité. Certains experts vont jusqu’à proposer un facteur cinq au vu de l’avancement des connaissances scientifiques.
En toute logique, les autorités devraient imposer aux exploitants du nucléaire de rechercher à réduire les rejets en tritium en réduisant les autorisations de rejet. Mais c’est l’inverse qui est en cours ! Et de façon conséquente.
Les associations réunies par ce communiqué demandent donc aux autorités de renoncer à toute augmentation des rejets en tritium et de s’engager avec les exploitants vers une démarche de diminution continuelle des rejets par les installations nucléaires de base (réacteurs et usines).
Une telle démarche est en cohérence avec,
1) – les accords de Sintra de la convention internationale OSPAR, ratifiée par la France le 29 décembre 1999, qui imposent que les concentrations en substances radioactives dans l’Atlantique Nord tendent vers zéro d’ici 2020.
2) – le principe de précaution inscrit dans la constitution française depuis 2004.
L’Association Nationale des CLI (ANCCLI), après avoir organisé un colloque pluraliste et écouté tous les points de vue est arrivée aux mêmes conclusions.
Nous défendons cette démarche de prudence dans toutes les structures de dialogue et concertation locale et nationales où nous siégeons. Malheureusement nous ne sommes pas entendus. Nous appelons donc les citoyens directement exposés aux rejets de faire connaître
leur désaccord par tous les moyens qu’ils jugeront utiles.
Bioaccumulation – bioamplification – bio-indicateur
Fiche technique parue dans l’ACROnique du nucléaire n°85 de juin 2009
On retrouve parfois certaines substances chimiques de façon plus concentrée dans les organismes vivants que dans le milieu qui les entoure (eau, air…). On parle alors de « bioaccumulation ». Ce phénomène est utile à la vie quand il s’agit d’oligo-éléments (fer, calcium…) et néfaste quand il s’agit de polluants (métaux lourds, PCB …).
La bioaccumulation a parfois tendance à augmenter le long d’une chaîne alimentaire. On parle alors de « bioamplification ». Ainsi, dans un même milieu, la concentration en PCB ou en mercure augmente du plancton au poisson et du poisson au mammifère marin ou à l’homme en bout de chaîne. Dans le cas du mercure, cette propriété a créé une catastrophe sanitaire à Minamata au Japon.
Chez un même organisme, l’ampleur de la bioaccumulation peut dépendre de l’organe, de l’âge et de la substance chimique.
Le phénomène peut être de grande ampleur. Pour une surveillance de l’environnement, on choisit généralement des organismes accumulant les polluants recherchés : on parle alors de « bio-indicateurs ». Ainsi, certains polluants présents sous forme de traces ne peuvent pas être détectés directement dans l’air ou l’eau, mais leur présence peut être détectée et quantifiée en utilisant des bio-indicateurs. Les lichens sont connus pour être d’excellents bio-indicateurs de la qualité de l’air pour de nombreux polluants.
Les phénomènes de bioaccumulation et de bioamplification s’expliquent par les propriétés chimiques de certaines substances qui se lient plus facilement à des molécules organiques qu’à l’eau. Lors de échanges entre l’organisme vivant et le milieu, elles s’accumulent donc dans l’organisme. Ce phénomène peut aller en s’amplifiant le long de la chaîne alimentaire.
Le fait d’avoir des polluants radioactifs ne change rien à l’affaire. Ce sont leurs propriétés chimiques qui font qu’ils peuvent s’accumuler dans certains organismes vivants. Ainsi, l’iode radioactif s’accumule de la même façon que l’iode non radioactif dans les algues.
Qu’en est-il du tritium, qui est de l’hydrogène radioactif ? L’atome d’hydrogène lié à une molécule d’eau s’échange facilement et fait que le tritium présent dans de l’eau s’équilibre rapidement. Les organismes primaires peuvent convertir rapidement le tritium de l’eau (appelé tritium libre) en tritium organique. Et tous les modèles d’impact sanitaire des radioéléments dans l’environnement supposent que la proportion de tritium sur l’hydrogène total est la même dans l’eau et dans les organismes vivants.
Or des données tendent à mettre en évidence les phénomènes de bioaccumulation et de bioamplification du tritium chez certains organismes aquatiques, contredisant ainsi les modèles d’impact. Dans la baie de Cardiff en Grande-Bretagne, cela peut s’expliquer facilement par le fait que ce sont des molécules organiques tritiées rejetées en mer, pour lesquelles l’hydrogène est moins mobile que celui de l’eau. Il s’accumule facilement dans la matière organique des organismes vivants, mais est transféré difficilement vers l’eau de mer.
En revanche, c’est de l’eau tritiée qui est rejetée des installations nucléaires. On observe pourtant de la bioaccumulation du tritium chez des espèces vivant dans les fonds marins au large de l’usine de retraitement de Sellafield en Grande-Bretagne. En France, au large de l’usine de La Hague, il n’y a pas assez de mesures pour pouvoir conclure. L’ACRO réclame donc une meilleure surveillance du tritium dans l’environnement proche des installations nucléaires.
Le Tritium : un risque sanitaire sous-estimé
Pierre BARBEY, ACROnique du nucléaire n°85, juin 2009
Le Tritium [3H] ou [T] est l’isotope radioactif de l’hydrogène [H]. A ce titre, il peut se substituer aux atomes d’hydrogène qui constituent l’un des quatre éléments fondamentaux (avec le carbone, l’azote et l’oxygène) de la matière organique, donc des corps vivants.
Le Tritium rejeté dans l’environnement, sous forme d’eau tritiée [HTO] ou sous forme de gaz (tritium et méthane), sera incorporé par les espèces vivantes de plusieurs façons.
– par inhalation,
– par transfert cutané,
– par ingestion.
En dehors des expositions professionnelles, c’est la voie ingestion qui est le mode d’exposition nettement dominant pour le public.
L’eau tritiée incorporée par un organisme vivant se comporte de manière identique à l’eau constitutive de cet organisme (un peu plus de 70% chez l’homme à plus de 90 % dans certaines espèces végétales et animales) et se répartit dans tout le corps.
Parmi les espèces végétales, plantes en milieu terrestre et phytoplancton en milieu aquatique, l’activité de photosynthèse conduit à l’incorporation d’eau tritiée [HTO] dans des molécules organiques [OBT] (Organically Bound Tritium ou tritium organiquement lié).
Ensuite, par ingestion, les espèces vivantes (et l’homme en bout de chaîne alimentaire) incorporent du Tritium sous forme d’eau tritiée mais également sous forme de tritium organique.
Les effets biologiques
Les radiations ionisantes agissent sur le vivant à travers deux modes d’action : – l’effet direct qui se traduit par des ruptures dans les liaisons covalentes, ce qui signifie qu’elles « cassent» des molécules. Ainsi de telles cassures sur des molécules d’ADN conduiront soit à des altérations de gènes, soit à des délétions ou aberrations chromosomiques (pouvant entraîner la mort de la cellule). – l’effet indirect qui conduit à la production de radicaux libres (espèces chimiquement toxiques) à partir de la radiolyse de molécules d’eau. L’action prépondérante de ces espèces radicalaires sur l’ADN constituera des lésions chimiques potentiellement mutagènes et/ou cancérogènes. Les rayonnements ionisants agissent au hasard. Aussi, au sein d’une cellule, toute molécule peut être la cible de leur action. Cependant, en raison du rôle central du patrimoine génétique dans le fonctionnement cellulaire, les lésions portées sur l’ADN seront responsables de l’essentiel des dégâts biologiques observés. Ils induisent dans la matière irradiée des événements initiaux (ionisations, excitations) pratiquement instantanés (de l’ordre de 10-15 sec.) mais dont les conséquences pathologiques éventuelles peuvent n’apparaître que plusieurs années ou décennies plus tard (risque cancérogène), voire dans la descendance (risque génétique). Certes, des mécanismes de réparation existent et une cellule altérée peut « se débarrasser» d’anomalies radio-induites. Dans d’autres situations, l’anomalie n’est pas réparée ou elle est mal réparée ce qui conduira à une cellule toujours vivante mais comportant une (ou des) mutation(s) susceptible(s) de s’exprimer tardivement : risque de cancers ou d’effets génétiques qui définissent les « effets stochastiques [1] ». Enfin, lorsque les doses sont élevées, les dégâts induits dans une cellule sont tels qu’ils entraînent la mort de la cellule par nécrose. Quand, dans un tissu ou un organe, un grand nombre de cellules sont ainsi atteintes, c’est le tissu même ou l’organe qui est alors gravement affecté : on parle alors « d’effets déterministes [2] ». |
Les atomes radioactifs [3H] se désintègrent en émettant des rayonnements particulaires bêta (β-) qui se caractérisent par l’énergie cinétique qui leur est associée. Comme toutes radiations ionisantes, les rayonnements β- du tritium ionisent la matière (arrachent des électrons) et c’est ce phénomène qui, fondamentalement, explique les dégâts biologiques qui en découlent. Par conséquent, la description des effets biologiques potentiels dus au tritium ne se distinguent pas des effets radio-induits dus à d’autres corps radioactifs.
La compréhension globale de ces lésions induites à l’échelle moléculaire et de leurs conséquences biologiques possibles sont résumés dans l’encadré ci-contre.
Compte-tenu de la nature des rayonnements émis par le tritium (bêtas de faible énergie), il n’y a aucun risque d’exposition externe. Aussi, en-dehors d’expositions professionnelles accidentelles, le risque pour le public exposé à des rejets de tritium dans l’environnement est un risque d’exposition interne à des doses faibles mais reçues de façon chronique. C’est donc le risque d’effets stochastiques qui est à considérer ici.
Le système de radioprotection
En tant qu’isotope de l’hydrogène, le tritium est bien un élément toxique en raison exclusivement de sa nature radioactive. N’en déplaise à ceux qui, inlassablement, cherchent à le distinguer des autres substances radioactives pour mieux le banaliser. En fait, le débat qui s’est instauré depuis plusieurs années dans une partie de la communauté scientifique viserait plutôt à réévaluer à la hausse le risque radio-induit qui est affecté au Tritium [3].
Dans le système de radioprotection actuel, le risque radio-induit est construit pour l’essentiel à partir des conséquences observées sur les survivants de Hiroshima et de Nagasaki qui ont subi une exposition externe à des rayonnements (principalement des photons) de façon aigüe. Quelques cohortes de patients et de travailleurs exposés ont permis de préciser le modèle de risque.
Lorsqu’il s’agit d’une contamination interne chronique, le système de radioprotection (développé par la CIPR [4]) vise à quantifier le dépôt d’énergie (dû aux substances radioactives incorporées) en le moyennant par tissu ou par organe. Il intègre en outre un coefficient de correction (appelé facteur de pondération, WR) pour tenir compte de la nature du rayonnement, essentiellement de la densité d’ionisation qu’il produit dans la matière. Par analogie (portant sur les doses équivalentes aux tissus ou aux organes), les coefficients de risques radio-induits issus d’Hiroshima-Nagasaki sont appliqués de la même façon aux situations de contaminations internes.
Le risque lié au tritium est sous-estimé
Cette approche simplificatrice ne tient pas compte de l’hétérogénéité, en particulier à l’échelle cellulaire, du dépôt d’énergie produit par les rayonnements bêta du tritium du fait de son faible parcours dans la matière vivante. Ce parcours de l’ordre du micron (0,6 µm en moyenne et 6 µm au maximum), nettement inférieur au diamètre moyen d’une cellule, peut conduire à ce qu’une quantité d’énergie importante soit déposée dans l’ADN si l’atome de tritium est localisé au niveau de la chromatine. Cette question est en outre accentuée par une densité d’ionisation élevée due aux bêtas du tritium [tableau n°1] comparativement aux rayonnements de référence (gamma du cobalt-60 ou rayons X de 250 kV) censés représenter le rayonnement externe produit lors des explosions nucléaires.
Bêtas [3H] |
Ray. X (250 kV) |
Gammas [60Co] | |
Transfert linéique d’énergie (keV/µm) |
4,7 | 1,7 | 0,22 |
Il s’agit là, sans doute, d’une des raisons principales qui expliquent la toxicité particulière du tritium.
En effet, de nombreux travaux scientifiques ont été réalisés pour évaluer les effets biologiques du tritium par comparaison à ceux obtenus à partir des rayonnements de référence. Ils sont très largement concordants pour exprimer, à dose absorbée égale, une radiotoxicité clairement plus élevée du tritium par rapport aux rayonnements de référence. A travers ces expérimentations, les auteurs calculent un coefficient d’efficacité biologique (EBR) qui est le rapport des dégâts biologiques induits par les bêtas du tritium sur ceux induits par les photons (X ou gamma). Ce rapport est souvent voisin de 1,5 à 2 (par comparaison aux rayons X) et de l’ordre de 2 à 4 (par comparaison aux rayons gamma). De tels résultats sont cohérents avec une approche biophysique qui conduit à un EBR théorique de 3,75.
Parmi ces expérimentations, celles qui présentent un intérêt prépondérant sont celles qui étudient des cibles biologiques telles que l’induction de cancers ou des anomalies chromosomiques car elles correspondent aux effets stochastiques. Dans ce cas-là, les EBR servent à construire les facteurs de pondération WR. Or, la CIPR a fixé arbitrairement un WR = 1 pour les rayonnements bêta quels qu’ils soient. Concrètement, de ce seul point de vue, cela signifie que le risque radio-induit dû au tritium est sous-évalué d’au moins un facteur 2 à 4.
Par conséquent, toujours pour ce seul argument évoqué ici, les coefficients de dose par unité d’incorporation (CDUI) établis pour le Tritium [tableau n°2] devraient être corrigés à minima par ce même facteur. Ces coefficients permettent de calculer la dose efficace reçue par un individu (en Sv mais plus souvent en mSv ou µSv) à partir de la connaissance de l’activité incorporée (en Bq de tritium).
Forme chimique | ≤ 1 an | 1-2 ans | 2-7 ans | 7-12 ans | 12-17 ans | adulte |
Eau tritiée | 6,4.10-11 | 4,8.10-11 | 3,1.10-11 | 2,3.10-11 | 1,8.10-11 | 1,8.10-11 |
OBT | 1,2.10-10 | 1,2.10-10 | 7,3.10-11 | 5,7.10-11 | 4,2.10-11 | 4,2.10-11 |
Incorporation de produits organiques tritiés et modèle biocinétique CIPR
D’autres questions relatives à la toxicité du tritium laissent suggérer que la sous-estimation du risque lié à ce radioélément pourrait être plus importante encore.
Le modèle biocinétique pour l’eau tritiée et les composés organiques tritiés est décrit pour le travailleur dans la Publication 78 de la CIPR (1997). Il est représenté par 2 compartiments représentant l’eau totale du corps (A) et l’ensemble de la matière organique (B). Il suppose que 97% de l’eau tritiée [tableau n°3] est en équilibre avec l’eau du corps et est retenu avec une demi-vie de 10 jours, le restant étant incorporé dans les molécules organiques et retenu avec une demi-vie de 40 jours. Pour les composés organiques du tritium [tableau n°4], 50% de l’activité est retenu avec la période biologique de l’eau libre (10 jours) et 50% avec la période biologique du carbone organique (40 jours).
Compartiment | Fraction incorporée (%) |
Période biologique (jours) |
A | 97 | 10 |
B | 3 | 40 |
Compartiment | Fraction incorporée (%) |
Période biologique (jours) |
A | 50 | 10 |
B | 50 | 40 |
Le modèle CIPR est mis en défaut par de récentes expérimentations où des rats ont été nourris avec du poisson prélevé dans la Baie de Cardiff (fort marquage en tritium libre et organique). De même des volontaires, ayant consommé des soles de cette région et qui ont été suivis pendant 150 jours, ont globalement confirmé les résultats. Le modèle CIPR sous-estime l’incorporation dans la matière organique et sa rétention dans le corps comme l’indique le tableau suivant :
Compartiment | Fraction incorporée (%) |
Période biologique (jours) |
A | 30 | 10 |
B | 70 | 100 |
D’autres auteurs, qui proposent un modèle alternatif multicompartimental, considèrent également que le modèle de la CIPR sous-estime la concentration en tritium organique présente dans le corps après incorporation.
L’ingestion de produits organiques tritiés est un facteur aggravant qui peut être parfois très élevé. Ainsi des auteurs ont pu montrer que la thymidine tritiée est environ 10.000 fois plus radiotoxique que l’eau tritiée. D’autres ont observé que l’arginine tritiée, qui est très rapidement incorporée dans l’embryon de souris, est encore plus radiotoxique pour cet élément (au stade de blastocyste).
La transmutation du tritium et l’effet isotopique
Deux autres raisons théoriques viennent renforcer les raisons plausibles qui peuvent expliquer l’existence de EBR presque toujours supérieurs à 1 avec le tritium.
Tout d’abord, lorsqu’un atome [3H] se désintègre en émettant une particule bêta, il se transforme en [He] (hélium). Pour le tritium organique, cette transmutation conduit à la formation d’un carbone ionisé. Des expérimentations portant sur l’incorporation de bases pyrimidiques [5] tritiées dans différents types de cellules ont démontré un rôle mutagène de cette transmutation. Des auteurs utilisant de la thymidine tritiée sur des cellules humaines ont pu établir que 31% des ruptures monocaténaires produites sur l’ADN seraient associées à ce phénomène de transmutation.
Par ailleurs, la différence de masse atomique entre des isotopes d’une même famille conduit à ce qui est communément appelé un « effet isotopique ». La différence de masse entre le tritium et l’hydrogène (un facteur 3) est susceptible de produire un effet discriminant entre ces deux éléments. Des données scientifiques plus récentes suggèrent une concentration renforcée de tritium au niveau de la couche d’hydratation intimement liée à l’ADN. Sans être du tritium organiquement lié au sens usuel, Baumgartner et collaborateurs ont clairement montré un enrichissement d’eau tritiée liée à des macromolécules (par comparaison à l’eau libre dans la cellule). Cet enrichissement en tritium est d’un facteur 1,4 pour l’eau d’hydratation des protéines et d’un facteur 2 pour l’eau d’hydratation de l’ADN.
Il y a 10 ans déjà, lors d’un colloque de la SFRP [6] centré sur le tritium, l’ACRO était intervenue pour demander que soit réévalué le risque associé au tritium notamment en prenant mieux en compte les EBR définis expérimentalement. Nous n’avons pas cessé de porter sur la place publique les nouvelles données de la littérature scientifique et d’interpeler les pouvoirs publics face aux tentatives de banalisation des rejets de tritium dans l’environnement. Depuis l’ASN a créé deux groupes de travail sur ce thème. L’ACRO a accepté d’y participer et se bat pour une réévaluation du risque radio-induit lié au tritium. L’histoire nous donnera raison.
[1] Effets aléatoires (expression probabiliste) qui apparaissent tardivement et dont la probabilité d’apparition augmente avec la dose de façon linéaire et sans seuil. Habituellement, ce type d’effet est mis en évidence à travers des études épidémiologiques. [2] Effets obligatoires au-delà d’un seuil de dose (propre à chaque effet observé), d’apparition généralement précoce et dont la gravité dépend de la dose reçue. [3] Radiation protection n°152. Emerging issues on Tritium and low energy beta emitters. 2008.
Report of AGIR. Review of risks from Tritium. 2007. [4] Commission Internationale de Protection Radiologique. Groupe d’experts internationaux qui produit régulièrement des recommandations en matière de radioprotection. [5] Base azotée dérivant de la pyrimidine, qui entre dans la composition des nucléotides, des acides nucléiques. [6] Société Française de Radioprotection