Pollution du ru des Landes près de l’usine de retraitement d’Areva à La Hague : de nouveaux résultats d’analyse confirment la présence de strontium et de plutonium

Voir le communiqué complet en version PDF

L’ACRO a confié à un laboratoire d’analyse suisse accrédité le soin d’effectuer des analyses complémentaires sur des échantillons de sol prélevés autour du ruisseau des Landes à la Hague. Les résultats confirment la présence de strontium-90 et de plutonium – deux éléments particulièrement radiotoxiques –  à des niveaux significatifs : jusqu’à 212 Bq/kg de matière sèche pour le strontium et jusqu’à 492 Bq/kg de matière sèche pour les seuls plutoniums 239 et 240 (239+240Pu).

Pour apprécier ce niveau de pollution, rappelons que la concentration la plus élevée répertoriée en France dans les sols et sédiments pour ces isotopes du plutonium, est de 1,4 Bq/kg sec. Le niveau trouvé actuellement au Ru des Landes est 350 fois plus élevé.

De même, en ce qui concerne le strontium-90, les mesures systématiques dans les sols en France indiquent en général des activités massiques de l’ordre du becquerel par kilogramme de sol sec. Les niveaux mesurés ici se situent donc jusqu’à plus de 200 fois cette valeur moyenne.

L’association a transmis ces derniers résultats à l’Autorité de Sûreté Nucléaire et à la Commission Locale d’Information.

 L’ACRO réitère sa demande que toute la lumière soit faite sur l’origine, l’étendue et l’impact de cette pollution, avec accès à toutes les données environnementales. En attendant, elle continue ses investigations.

Contexte

Dans le cadre de son Observatoire Citoyen de la Radioactivité dans l’Environnement, l’ACRO avait révélé, en octobre 2016, la présence d’une pollution radioactive liée entre autre à la présence d’américium-241 dans la zone publique située au Nord-Ouest du site AREVA la Hague, non loin de la source du ruisseau des Landes.

Les résultats de nos analyses avaient été présentés lors de la réunion de la Commission locale d’Information en octobre dernier, au cours de laquelle l’Autorité de Sûreté Nucléaire (ASN) avait jugé prendre « très au sérieux nos mesures ».

Suite à ces premières constatations, l’ACRO a continué les investigations sur ses fonds propres. Les nouveaux résultats, présentés en janvier 2017, ont confirmé nos premières analyses et de surcroît, mis en évidence des niveaux de contamination encore plus importants en certains endroits. Outre l’américium-241, d’autres éléments radioactifs ont été mesurés, comme le césium-137, le cobalt-60, l’iode-129.

Dans un communiqué publié le 24 janvier, AREVA reconnaissait la pollution et s’engageait à nettoyer la zone. Cependant, lors de la réunion du 26 janvier de la Commission Locale d’Information (CLI), la compagnie s’était refusée à donner des valeurs sur la contamination au plutonium.

 Les nouveaux résultats valident la présence des strontium-90 et plutoniums dans la liste des polluants et confirment nos préoccupations. Areva ne doit donc pas tarder pour dépolluer le site.

Résultats

Ces nouvelles analyses concernent les deux points les plus pollués, mis en exergue par nos analyses gamma : Ru-1bis (0 à 5 cm) et Ru-1ter (4 niveaux 0 à 20 cm). Les résultats sont présentés dans le tableau ci-dessous.

Les cinq analyses semblent désigner une source unique de Pu alpha dont le rapport d’activité 238Pu/239+240Pu est de 0,082.

Par contre, si les deux prélèvements de surface donnent un rapport 239+240Pu/241Am de 1,3, similaire au rapport moyen de 1,5 issu de la surveillance réglementaire, ce rapport varie sur la hauteur d’un même carottage avec 3 à 4,6 fois plus de plutonium en profondeur.

 

Dotée d’un laboratoire d’analyse agréé, l’ACRO effectue depuis plus de trente ans, une surveillance citoyenne de la radioactivité dans l’environnement. Avec des prélèvements mensuels autour de l’usine de retraitement de La Hague, cette surveillance implique des « préleveurs volontaires » et est ouverte à tous.

Voir le communiqué complet en version PDF

L’ACRO alerte sur une pollution à l’américium autour du ruisseau des Landes à la Hague et demande la transparence sur les origines et sur l’impact de cette pollution.

En octobre dernier, l’ACRO avait dénoncé la présence d’une pollution radioactive liée entre autre à la présence d’américium-241, élément réputé hautement radiotoxique, dans la zone publique située au Nord-Ouest du site AREVA la Hague, non loin de la source du ruisseau des Landes.

Les résultats de nos analyses avaient été présentés lors de la réunion de la Commission locale d’Information en octobre dernier, au cours de laquelle l’Autorité de Sûreté Nucléaire (ASN) avait jugé prendre « très au sérieux nos mesures ».

Suite à ces premières constatations, l’ACRO a décidé de continuer les investigations sur ses fonds propres afin de mieux cerner l’étendue des pollutions observées ainsi que leurs origines. Deux campagnes de prélèvement ont été réalisées les 17 octobre et 16 novembre dernier au cours desquelles ont été collectés une quarantaine d’échantillons.

Les nouveaux résultats obtenus sont sans appel : ils confirment nos premières analyses et de surcroît, montrent des niveaux de contamination encore plus importants en certains endroits. Outre l’américium-241, d’autres éléments radioactifs sont mesurés comme le césium-137, le cobalt-60, l’iode-129. Des mesures des isotopes du plutonium et de strontium-90 sont également en cours.

Nos résultats ont été présentés lors de la réunion de la Commission locale d’information qui se tenait ce 26 janvier à Beaumont-Hague. Sans attendre cette réunion, dans un communiqué publié le 24 janvier, AREVA reconnaissait la pollution et s’engageait à nettoyer la zone. Nous prenons note avec satisfaction de cette annonce qui montre une fois de plus l’importance de la surveillance citoyenne effectuée par l’ACRO.

Toutefois, l’expertise réalisée par l’exploitant, telle que présentée par AREVA lors de la réunion de la CLI, nous semble incomplète et les niveaux maxima relevés par ses mesures sont en dessous des nôtres.

C’est pourquoi, nous souhaitons que toute la lumière soit faite sur l’origine et sur l’impact de cette pollution. Nous avons  donc demandé qu’un groupe d’expertise soit créé sur ce sujet avec, notamment, l’accès à toutes les données environnementales de la zone Nord-Ouest, depuis la création de cette zone ouest de stockage des déchets. La CLI a validé cette demande.

D’autre part, nous restons vigilants et demandons qu’une expertise indépendante (à laquelle nous souhaiterions participer) soit menée à l’occasion des travaux de dépollution.

Communiqué ACRO du 26 janvier 2017. Voir la version PDF

Cliquez ici pour voir la synthèse des résultats

Voir la présentation ACRO lors de la CLI AREVA du 26/01/2017

L’ACRO lance un nouveau site Internet pour plus de transparence dans le nucléaire, avec un premier focus sur les anomalies et irrégularités de certaines pièces sensibles du parc nucléaire

Des anomalies de ségrégation carbone ont été découvertes dans l’acier des calottes de cuve et de certains générateurs de vapeur, des irrégularités voire des falsifications ont été repérées à l’usine Creusot-Forge. Cette situation est grave car ces équipements sont très importants pour la sûreté. La plus grande transparence est donc nécessaire dans cette crise.

L’ACRO a créé un site Internet dédié afin de faire le point :

Si des efforts ont été constatés du côté de l’Autorité de Sûreté Nucléaire (ASN) et de l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN), ce n’est pas suffisant. En particulier, EDF et Areva ne publient aucune information technique.

Il est impossible à tout un chacun de se faire une opinion à partir des seules informations disponibles en ligne.

En Belgique, suite à la découverte de défauts dans l’acier des cuves des réacteurs nucléaires, l’Agence fédérale de contrôle nucléaire, a mis en ligne une page spéciale avec :

  • ses propres avis et les rapports qui sous-tendent sa décision ;
  • les dossiers de justification d’Electrabel, l’exploitant ;
  • les analyses indépendantes du Service de Contrôle Physique d’Electrabel.

L’ACRO demande donc une plus grande transparence avec la publication de tous les documents relatifs à cette affaire. L’association exercera une grande vigilance et mettra toutes les informations collectées sur son nouveau site dédié.

AVIS de l’ACRO en réponse à la consultation sur les projets de décret et d’arrêté relatifs au plan national de gestion des matières et déchets radioactifs

Le Plan National de Gestion des Matières et Déchets Radioactifs (PNGMDR), officialisé par la loi de 2006, a pour but de trouver une solution de gestion pour chaque catégorie de déchets radioactifs existants et à venir. Il inclut aussi les matières radioactives qui pourraient devenir des déchets.

Ce Plan est placé sous la responsabilité de l’Autorité de sûreté nucléaire et du Ministère en charge de l’environnement qui organisent régulièrement des auditions des producteurs de déchets et d’experts. Ces auditions sont ouvertes et l’ACRO y participe.

Le rapport 2016-2018 va être publié prochainement. Il a fait l’objet, pour la première fois, d’une évaluation environnementale qui a été soumise à l’évaluation de l’Autorité environnementale. Suite à ces travaux, un décret et un arrêté vont être prochainement publiés. Ils sont soumis à une procédure de consultation sur le site Internet du Ministère de l’Environnement, de l’Energie et de la Mer.

Vous pouvez encore y participer.

Pollution en américium-241 dans la zone Nord-Ouest du site Areva-La Hague

La pollution à l’américium-241 augmente dans le nord-ouest du site Areva-La Hague : jusqu’à + 80% en 7 ans pour ce radioélément particulièrement radiotoxique.

Voir la note technique.

Trois générations d’armes nucléaires

Mis en avant

Fiche technique extraite de l’ACROnique du nucléaire n°46, septembre 1999


Dans cette fiche technique, nous allons tenter de décrire simplement les principes de base des bombes atomiques et montrer les liens avec l’industrie nucléaire. Nous nous limiterons à des principes généraux. Une fois la bombe fabriquée, il faut pouvoir la déployer, la contrôler, la protéger… puis démanteler les bombes et les installations devenues obsolètes et dépolluer les sites contaminés. Selon les audits atomiques indépendants effectués en France et aux Etats-Unis cela représente plus de la moitié des coûts engagés, mais cela dépasse largement notre propos.


Un peu de physique

La Fission

La fission du noyau d’éléments lourds naturels comme l’uranium ou artificiels comme le plutonium entraîne un dégagement d’une grande quantité d’énergie et de particules, comme les neutrons. Cette fission peut être déclenchée par le choc d’un neutron. Une réaction en chaîne se développe alors : la fission émettant des neutrons qui déclenchent d’autres fissions qui vont émettre d’autres neutrons… Si le nombre de neutrons produits est inférieur au nombre de neutrons consommés ou qui s’échappent, la réaction va s’éteindre d’elle même, sauf si elle est entretenue par un apport extérieur de neutrons. Si le nombre de neutrons créés est supérieur au nombre de neutrons consommés, alors la réaction s’emballe et conduit à une explosion. Dans le cas de réactions nucléaires, l’emballement est très rapide et l’énergie dégagée immense, d’où l’intérêt que lui portent les militaires. Enfin, si le nombre de neutrons créés est égal au nombre de neutrons consommés ou s’échappant, la réaction va s’auto-entretenir. Ce régime, dit critique, est celui qui a lieu dans les réacteurs nucléaires. En cas d’explosion, on parle de régime sur-critique et, dans l’autre cas, de régime sous-critique. Les isotopes impairs de l’uranium et du plutonium sont plus facilement fissibles que les isotopes pairs quand ils sont soumis à un flux de neutrons thermiques, comme dans les réacteurs nucléaires classiques, mais avec des neutrons rapides, présents dans les surgénérateurs ou les bombes, tous les isotopes du plutonium ont pratiquement les mêmes propriétés. On appelle masse critique la quantité de matière fissile minimum nécessaire à la sur-criticité.

L’uranium naturel ne contient que 0,72% d’U235, celui qui est le plus fissible, le reste étant essentiellement composé d’U238 qui ne convient pas. Pour faire une arme il faut augmenter cette proportion jusqu’à 80-93%, en utilisant un processus industriel, l’enrichissement, qui est le même que celui utilisé pour la production de combustible civil où la proportion d’U235 varie de 3 à 5%. C’est l’usine de Pierrelatte (d’abord CEA puis COGEMA) qui se charge de cette opération. Le plutonium est produit dans des réacteurs nucléaires par bombardement d’uranium 238 par des neutrons et doit ensuite être extrait du combustible irradié par un processus industriel identique à celui de la technologie civile, à savoir le retraitement. En fonction de la technologie du réacteur et du temps d’irradiation on obtiendra un pourcentage plus ou moins élevé de Pu239, qui est le favori des militaires. Les autres isotopes sont issus de bombardements successifs du Pu239 par des neutrons, quand ils nâentraînent pas une réaction de fission. Pour avoir un pourcentage élevé de Pu239, il suffit d’irradier moins longtemps du combustible dans n’importe quel réacteur nucléaire. Les réacteurs qui fonctionnent à l’uranium naturel en produiront plus. Le manteau des surgénérateurs comme Phénix et ou Superphénix, c’est-à-dire les barres de combustibles qui sont à la périphérie, permet aussi de produire du Pu239 de bonne qualité.

La Fusion

La fusion de deux noyaux légers dégage une plus grande quantité d’énergie, mais il faut comprimer beaucoup plus les gaz utilisés pour que la réaction puisse avoir lieu. Dans les armes thermonucléaires, c’est la fusion du tritium (H3) avec le deutérium (H2) qui est utilisée ; elle produit de l’hélium plus un neutron. L’avantage c’est que ces gaz sont légers et qu’une faible masse est suffisante pour dégager une énergie énorme. La difficulté est liée à l’allumage, des explosifs chimiques classiques n’étant pas suffisants pour atteindre la compression nécessaire.

Le tritium est aussi produit dans des réacteurs nucléaires par bombardement du lithium 6 par un neutron. Le Lithium 6, lui, est présent dans la nature, mais il doit être séparé de son isotope, le lithium 7. En France, c’est la COGEMA qui se charge de cette opération dans son usine de Miramas. L’ensemble du processus de production du tritium reste géré par le CEA dans deux réacteurs à eau lourde (Célestin 1 & 2 à Marcoule). Le deutérium, quant à lui, nécessite de l’eau lourde pour sa fabrication, qui a été importée de Norvège, des Etats-Unis, mais aussi fabriquée en France dans deux usines pilotes qui ne fonctionnent plus (Toulouse et Mazingarbe, Nord). Le site de production du deutérium gazeux à partir d’eau lourde n’est pas connu clairement. Il est possible que le deutérium soit produit au centre civil du CEA de Grenoble, mais également qu’il soit extrait du processus d’extraction du tritium à Marcoule.

Première génération

Les armes de première génération n’utilisent que la fission de noyaux lourds. Deux masses sous critique d’uranium sont regroupées ou une masse de plutonium ou d’uranium est brusquement comprimée à l’aide d’un explosif chimique afin d’en faire une seule masse sur-critique. La réaction en chaîne est généralement amorcée par une source de neutrons qui doit être parfaitement synchronisée avec le passage au régime sur-critique pour avoir le meilleur rendement, mais cela n’est pas une nécessité. Les bombes sud-africaines étaient amorcées par les neutrons du bruit de fond. La puissance de la bombe peut être améliorée grâce à un matériau réflecteur de neutrons, comme le béryllium. Il est relativement facile de fabriquer une bombe atomique de première génération, à condition que l’on possède la matière fissile. Les Etats-Unis n’ont jamais testé la bombe à l’uranium enrichi avant de la larguer sur Hiroshima et n’ont fait qu’un seul essai pour celle au plutonium avant de bombarder Nagasaki. Une équipe de 400 personnes environ a été suffisante à l’Afrique du Sud pour construire six bombes à l’uranium enrichi. La fin des essais nucléaires ne supprime donc pas le risque de prolifération horizontale, à savoir l’émergence de nouvelles puissances nucléaires ou la menace d’un groupe terroriste qui se serait procuré la matière première au marché noir. Une importante question concerne l’utilisation de plutonium issu des réacteurs civils à eau sous pression pour fabriquer ce type d’arme. Pour les partisans du retraitement du combustible irradié, le Pu 240 est indésirable car il risque de déclencher une implosion avant même que la sur-criticité soit atteinte, réduisant ainsi la puissance de la bombe. Cela peut même être un avantage pour fabriquer une bombe rudimentaire, car il nây a pas besoin de source de neutrons pour initier la réaction. Même de puissance réduite, une telle bombe peut faire beaucoup de dégâts. Un autre inconvénient avancé pour le plutonium civil est que le pourcentage de Pu238 est trop élevé (environ 2%, pour environ 0,01% pour du Pu dit militaire). D’une durée de vie relativement courte (88 ans), la désintégration du Pu 238 entraîne un échauffement qui peut endommager les explosifs chimiques. Si la bombe larguée sur Nagasaki avait contenu 2% de Pu 238, elle aurait eu une température de l’ordre de 250°C. Cette montée en température peut néanmoins être réduite des deux tiers à l’aide d’un système de refroidissement en aluminium. Enfin, le troisième argument avancé par les promoteurs du retraitement est que le plutonium civil est beaucoup plus irradiant, entraînant un risque beaucoup plus élevé pour les personnes travaillant à proximité. L’utilisation de cobayes humains par les puissances nucléaires pour tester les effets de la radioactivité laisse penser que cet argument n’est pas forcément un inconvénient majeur… (Note: cette discussion est tirée d’un article de Frank von Hippel, Fissile material security in post-cold-war world, Physics Today, june 1995 et de A.B. Lovins, Nuclear weapons and power-reactor plutonium, Nature, Vol. 283, 28 fev. 1980, p. 817).

Les bombes larguées sur Hiroshima et Nagasaki, avaient respectivement une puissance de 15 et 22 kilotonnes d’équivalent TNT (Note : 1kt = 1012 cal = 4,18 x 1012 J). Les armes à fission pure développées par la suite ont atteint plusieurs dizaines de kilotonnes.

Deuxième génération

Le principe des armes thermonucléaires est simple à comprendre, même si leur réalisation pose de gros problèmes technologiques. Dans les armes à fission dopées (boosted fission), une réaction de fission similaire à celle de l’arme de première génération, déclenche une réaction de fusion du cœur constitué d’un mélange de tritium (H3) et de deutérium (H2). Les neutrons dégagés par la réaction de fusion entraînent une réaction de fission plus complète que celle qui a lieu dans les armes de première génération où une faible portion de la matière fissile est consommée. La performance d’une telle arme dépend essentiellement de l’explosion chimique initiale car il est important que le gaz soit suffisamment comprimé et ne se mélange pas avec le matériau fissible. Cela peut être testé sans enclencher de réaction nucléaire et reste donc possible dans le cadre du “traité d’interdiction des essais nucléaires”, à condition d’avoir une installation permettant d’étudier l’hydrodynamique de l’explosion à l’aide de rayons X : c’est un des buts de l’installation AIRIX du CEA, en construction à Moronvillier, sur le site où ont lieu les essais nucléaires froids. Il est généralement admis qu’Israël, l’Inde et le Pakistan ont atteint ce stade. A noter qu’avec cette technologie, le plutonium, dit de qualité civile, ne change rien, quant à la puissance de l’explosion, mais le plutonium militaire est généralement préféré pour des problèmes de température et de radioactivité. Dans les bombes thermonucléaires ou bombes à hydrogène, une bombe à fission, éventuellement dopée, déclenche l’explosion par réaction de fusion. C’est un mélange de lithium et de deutérium enfermé dans une capsule tampon d’uranium ou de plomb qui est utilisé, le tritium nécessaire à la réaction de fusion étant directement produit lors de l’explosion par le bombardement des neutrons. Il n’y a virtuellement pas de limite à la puissance dégagée par ce type d’arme ; l’essai nucléaire le plus puissant de l’histoire, avec 60 Mégatonnes (60.000 kilotonnes) dâéquivalent TNT due à 97% à la réaction de fusion, a eu lieu en URSS en octobre 1962. Mais, sachant que la puissance dégagée lors de l’explosion est de l’ordre de 1kt/kg, il est possible de faire beaucoup de dégâts avec une bombe de quelques kg. Des efforts constants de miniaturisation ont eu lieu afin de rendre la bombe plus légère et transportable par toutes sortes de vecteurs, en particulier des missiles intercontinentaux.

Il a fallu de longues années de recherche aux Etats-Unis et en URSS pour mettre au point ce type d’armes (Note : voir le dossier de Physics Today, Nov. 1996) ; mais une fois les principes de base connus, il est possible dâaccéder rapidement à cette technologie : la Chine a testé sa première bombe thermonucléaire après seulement 3 essais de première génération, un essai à fission dopée et un essai préliminaire de bombe à hydrogène. Les armes de deuxième génération sont d’une technologie plus élaborée et, malgré deux milliers d’essais nucléaires, le mécanisme n’est pas encore entièrement compris. Les puissances nucléaires déclarées sont probablement arrivées au bout des améliorations possibles et possèdent une bonne maîtrise de la production de ce type d’armes. La fin des essais nucléaires n’est donc pas trop pénalisante pour elles, mais est certainement un frein pour les autres pays. Il est peu probable que de telles armes disparaissent car elles sont sûres et très mortelles. Les réductions effectuées dans les arsenaux concernent essentiellement des armes obsolètes ou dâune utilité devenue douteuse. Le tritium et le Li6 deviennent des éléments stratégiques qui doivent être contrôlés comme les matières fissibles pour éviter la prolifération.

Troisième génération

La troisième génération regroupe des bombes basées sur les technologies précédentes, mais dont certains effets sont accentués ou réduits selon l’utilité stratégique recherchée. Par exemple, la bombe à neutrons, qui émet une grande quantité de neutrons avec une puissance réduite, est supposée être efficace contre une avancée massive de chars. Son utilité tactique est en fait réduite. D’autres améliorations visent à réduire les “effets collatéraux” de la radioactivité émise, là aussi avec des succès limités. A noter que ces améliorations constituent une entorse à la doctrine de dissuasion, étant un premier pas vers une bombe pouvant être utilisée sur le champ de bataille. Ces armes nécessitent de nombreux développements scientifiques et technologiques et l’arrêt des essais nucléaires est un frein à leur développement.

Les différents types de têtes nucléaires en service dans l’arsenal français (1960-1998)

Type
Puissance
Vecteur
Armée
Entrée en service
Retrait du service
AN11
60 kt
Mirage IVA
Air
06/07/63
1973
AN22
70 kt
Mirage IVA
Air
1973
01/07/88
MR31
130 kt
S2 Albion
Air
02/08/71
MR41
500 kt
M1/M1 SNLE
Marine
2/8/1971
1979
AN52
25 kt
Mi3,JagA,SEt
Air
06/04/73
AN51
10/25 kt
Pluton
Terre
3/1974
1993
TN60
1 Mt
M20 SNLE
Marine
23/12/76
TN61
1 Mt
M20 SNLE
Marine
1978
1993
TN61
1 Mt
S3 Albion
Air 
01/06/80
16/09/96
TN70
150 kt
M4A SNLE
Marine
25/05/85
1997 
TN80
300 kt
Mirage IVP
Air
01/09/85
01/07/96
TN71
150 kt
M4B SNLE
Marine
09/12/87
TN81
300 kt
Mirage 2000 N
Air
01/07/88
TN81
300 kt
Super-Etendard
Marine
4/1989
TN90
80 kt
Hadès
Terre
1992
1996
TN75
100 kt
M45 SNLE
Marine
1/1997

AN: fission Pu ; MR : fission dopée Pu ; TN : thermonucléaire (Tiré du site du CDRPC)


Pour en savoir plus

Cette fiche technique est basée sur les références suivantes (sauf les références déjà indiquées) :

* Bruno Barillot, Audit atomique, CDRPC, 187, montree de Choulans, 69005 Lyon (fevrier 1999)

* Stephen I. Schwartz editor, Atomic Audit, Brookings Institution Press, 1775 Massachusetts Ave., N.W. Washington, D.C. 20036 (1998)

* Andre Gsponer et Jean-Pierre Hurni, Fourth generation of nuclear weapons, Technical Report, INESAP, c/o IANUS, Darmstadt University of Technology, D-64289 Darmstadt (mai 1998)

* The military critical technology list, part II : weapons of mass destruction technologies, section V : nuclear weapon technology, Department of Defence, Etats-Unis, fevrier 1998, peut être téléchargé à l’adresse suivante : http://www.dtic.mil/mctl/

Ancien article

Concentration anormale en tritium dans l’eau de mer à proximité de l’usine Areva

ACROnique du nucléaire n°101

Communiqué de presse

De l’énergie à gogo !

Editorial de l’ACROnique du nucléaire n°91


Combien de mails par jour recevons nous, nous proposant d’aider au transfert de fonds acquis plus ou moins illégalement moyennant un pourcentage mirobolant ? Pour les gogos plus scrupuleux, il y a la version de la « loterie Bill Gates » ou du mourant sans héritier qui veut faire un don colossal à une œuvre humanitaire. Cela doit marcher de temps en temps puisque les propositions perdurent.

Ayant pignon sur rue, les banques sont apparues plus crédibles : aux Etats-Unis, elles ont fait croire aux classes sociales les plus défavorisées qu’elles pouvaient s’offrir à crédit la maison de leurs rêves, moyennant un taux d’usure énorme. Prises à leur propre piège, elles ont elles-mêmes cru pouvoir s’enrichir sans limites, avec les conséquences que l’on connaît. Les élites financières, alléchées par un taux d’intérêt de 17% par an, se sont aussi fait prendre par Bernard Madoff et un trivial système de vente pyramidal.

En promettant une énergie illimitée grâce à ITER ou 5 000 ans d’électricité et un recyclage quasi-complet grâce aux réacteurs de génération IV, l’industrie nucléaire utilise les mêmes grosses ficelles pour tenter de séduire et obtenir des fonds publics. Et ça marche ! Le CEA vient de signer un contrat de 652 millions d’euros dans le cadre du Grand Emprunt pour étudier la faisabilité d’un prototype de réacteur de nouvelle génération et proposer un avant-projet détaillé en 2017. Pour ITER, la crise économique aidant, l’Union européenne a du mal à suivre l’explosion des coûts du projet. Cet été, elle envisageait sérieusement de couper dans les autres budgets de recherche pour ce projet unique.

Les hommes politiques, élus sur la promesse d’un monde meilleur, n’ont pas trop le choix. Ils ont tout intérêt à croire et à faire croire à l’avènement d’une énergie illimitée. Paul Valéry[1] remarquait dès 1931 que « le temps du monde fini commence ». Et d’ajouter que « nous devons désormais rapporter tous les phénomènes politiques à cette condition universelle récente ». En vain. Presque un siècle plus tard, le monde a rétréci et continue de rétrécir : selon le WWF, l’Empreinte Ecologique de la Terre a dépassé sa biocapacité de 50%. Sans surprise, ce sont les pays de l’OCDE qui sont les principaux responsables. Et comme l’épuisement des ressources naturelles ne suffit pas à nos sociétés, elles augmentent aussi tous les ans leur dette financière.

Certes, s’endetter pour un investissement qui profitera aux générations futures, est nécessaire. Mais les projets doivent être évalués et leur pertinence parfaitement justifiée. Alors que les projets de recherche du Grand Emprunt vont faire l’objet d’une évaluation et d’une compétition, le nucléaire a été servi à part. Comment les arbitrages ont-ils été faits ? Comment les projets ont-ils été évalués ? Par qui ? Nous n’en savons rien.

EdF l’a bien compris : elle consacre une partie de son budget de recherche à faire des calculs prospectifs sur l’enfouissement des déchets nucléaires, pour s’assurer que le futur centre de stockage prévu par l’ANDRA à Bures, qu’elle doit financer à 80%, « ne soit pas une Rolls-Royce ». Et elle a déjà contesté le coût du projet. Inversement, EdF et Areva se plaignent d’une Autorité de Sûreté Nucléaire qui serait trop exigeante, et par là même responsable des surcoûts de l’EPR. Argument fallacieux, puisque les autres autorités européennes n’ont pas été plus tendres.

Alors, l’avis du public… Le mépris était flagrant lors du débat EPR. Il a juste le droit de consommer en se taisant.


[1] Regards sur le monde actuel et autres essais

Ancien lien

Le mythe du recyclage des combustibles nucléaires

Paru dans l’ACROnique du nucléaire n° 91 de décembre 2010


Areva est très fière de son activité à l’usine de La Hague : « grâce à notre plateforme industrielle, 96% des matières contenues dans les combustibles usés peuvent être valorisées sous forme de nouveaux combustibles, MOX (mélange d’oxydes d’uranium et de plutonium), ou URE (uranium de recyclage enrichi). » Et d’ajouter que le recyclage permet « une économie d’uranium naturel de l’ordre de 20 à 25% ». Voir par exemple le rapport 2009 d’Areva sur le traitement des combustibles usés provenant de l’étranger disponible en ligne. Au HCTISN, Areva a annoncé 17% d’économie d’uranium. Il y a donc des chiffres pour les experts et des chiffres pour les gogos, pardon, le public…

Comment se fait-il que si l’on recycle 96% de la matière, on ne fait une économie que de 25% maximum ? Plongeons nous donc dans ce que l’industrie nucléaire appelle le « cycle du combustible » pour comprendre.

Le détail des flux de matières à chaque étape du « cycle nucléaire » n’était pas connu, malgré les demandes répétées des associations. Grâce à la diffusion sur Arte d’un film sur l’envoi en Russie d’une partie de l’uranium de retraitement, le sujet a fait polémique et  le HCTISN[1] a été saisi. Il a rendu son rapport le 12 juillet 2010. L’ACRO, qui siège au Comité et a participé au Groupe de Travail, n’a pas signé le rapport. Il a été difficile d’arracher des données exhaustives aux exploitants et les chiffres obtenus ne sont pas toujours cohérents entre eux. Les données nouvelles contenues dans ce rapport vont cependant nous permettre, de façon approximative, d’estimer le taux de recyclage de l’industrie nucléaire. Sauf mention contraire, tous les chiffres qui suivent sont tirés de ce rapport disponible sur le site Internet du Comité. Le point de vue de Wise Paris, des associations de protection de l’environnement qui ont participé à ce groupe de travail, est sur notre site Internet.

La chaîne de l’uranium, de la mine à l’entreposage

L’atome d’uranium a essentiellement deux isotopes dans la nature, l’uranium 235 et l’uranium 238. Ils ont les mêmes propriétés chimiques, mais ont une masse légèrement différente. En revanche, le noyau de l’atome a des propriétés différentes : l’uranium 235 fissionne facilement quand il est bombardé par un neutron, mais pas l’uranium 238.

Dans la nature, la proportion entre ces deux isotopes est de 0,7% pour l’uranium 235, le fissible, et 99,3% pour l’uranium 238. Il y a aussi un tout petit peu d’uranium 234 (0,0057%). A l’exception des réacteurs Candu au Canada, qui fonctionnent avec de l’uranium naturel, les réacteurs nucléaires utilisent un combustible qui contient de 3,5% à 5% d’uranium 235. Il faut donc « enrichir » l’uranium naturel : c’est une étape complexe et coûteuse industriellement. Selon le HCTISN, en moyenne sur les trois dernières années, il a fallu 8 100 tonnes d’uranium naturel pour produire 1 033 tonnes de combustible nucléaire. Le reste étant de l’uranium appauvri.

L’uranium appauvri n’est pas considéré comme un déchet, car une petite partie est utilisée comme nous le verrons plus tard et le reste est potentiellement utilisable dans l’avenir si la génération IV des réacteurs nucléaires voit le jour. C’est donc un « stock stratégique ».

Ces chiffres sont cependant à manier avec précaution car, dans ce même rapport, on peut lire qu’en 2008 EDF a importé 8 695 tonnes d’uranium naturel pour son parc. Cela fait 7,3% de plus que la valeur moyenne annoncée. Par ailleurs, en fonction des cours de l’uranium, le processus d’enrichissement sera plus ou moins poussé, comme illustré dans le tableau ci-dessous.

 

Production de 1000 t d’uranium enrichi à 4%  (dont 40 tonnes
d’uranium 235)

Quantité d’uranium
naturel nécessaire

(dont uranium 235)

7436 tonnes (52 tonnes 235U)

8134 tonnes (57 tonnes 235U)

9002 tonnes (63 tonnes 235U)

Quantité d’uranium
appauvri généré par l’enrichissement (dont uranium 235)

6436 tonnes (12 tonnes 235U)

7134 tonnes (17 tonnes 235U)

8002 tonnes (24 tonnes 235U)

Teneur de l’uranium
appauvri en uranium 235

0,20%

0,25%

0,30%

Illustration de la possibilité d’arbitrage entre uranium et services d’enrichissement

A la sortie du réacteur, seule une partie de l’uranium 235 contenue dans les combustibles a été consommée : il en reste de l’ordre de 0,8 à 0,9%, c’est-à-dire plus que dans la nature. L’uranium 238, quand il est bombardé par des neutrons, a tendance à se transformer par radioactivité en plutonium, qui lui, peut fissionner plus facilement. Bref, une partie du combustible qui sort des centrales nucléaires est a priori réutilisable. A 96% selon les exploitants. C’est l’objet du retraitement qui a pour but de séparer chimiquement les matières valorisables des déchets ultimes. Certains pays comme la Suède ou les Etats-Unis ont choisi de ne pas retraiter. Tout ce qui sort de leurs centrales constitue donc des déchets ultimes.

Sur les 1 033 tonnes de combustibles neufs qui entrent annuellement dans le parc de réacteurs français, 850 tonnes par an sont retraitées après un séjour de 3 ans en réacteur. Areva en extrait 8,5 tonnes de plutonium et 800 tonnes d’uranium dit de retraitement. Le reste constitue des déchets ultimes. Quant au combustible non retraité, il n’est pas classé dans les déchets car il pourra être retraité un jour.

Avec les 8,5 tonnes de plutonium, mélangées à 91,5 tonnes d’uranium  appauvri, ce sont 100 tonnes de combustible MOx qui s’ajoutent aux 1033 tonnes de combustible neuf. Ce combustible de recyclage peut alimenter partiellement 22 réacteurs autorisés en France. Cela correspond en moyenne à 20 recharges par an et produit la même énergie qu’un combustible « classique » contenant 3,7%  d’uranium 235.

Sur les 800 tonnes d’uranium de retraitement, 300 sont envoyées en Russie, à Tomsk, pour être réenrichies. Les 500 tonnes restantes viennent s’ajouter tous les ans au « stock stratégique ».  La Russie renvoie en France 37 tonnes de combustible par an et garde les 263 tonnes d’uranium appauvri. L’uranium de retraitement réenrichi alimente deux des réacteurs de la centrale de Cruas le long du Rhône.

Le recyclage se limite donc à 100 tonnes de combustible MOx et les 37 tonnes de combustible à base d’uranium de retraitement, qui viennent s’ajouter aux 1 033 tonnes de combustible classique dans les réacteurs. Les combustibles recyclés ne sont pas à nouveau retraités ni recyclés après leur passage en réacteur. Il n’y a donc qu’un tour de recyclage.

Au total, ce sont donc 1 170 tonnes de combustibles usés qui sortent des réacteurs par an. Ainsi, 8,5 tonnes de plutonium plus 37 tonnes d’uranium de retraitement sur 1 170 tonnes de combustible, cela ne fait que 3,9% de recyclage. On est loin des 96% fanfaronnés par l’industrie nucléaire ! Si l’on ajoute l’uranium appauvri, les 137 tonnes de combustible issu du recyclage permettent une économie de 11,7% d’uranium naturel. C’est bien en dessous des 20 à 25% affichés par Areva !

Et encore, ces chiffres correspondent à la meilleure performance de l’industrie nucléaire qui n’a pas voulu remonter plus loin dans le temps. La réutilisation de l’uranium de retraitement n’a commencé qu’en 1994, alors que le retraitement a commencé en 1966. Le recyclage du plutonium était aussi bien moins important dans le passé.

EDF et Areva ont signé un contrat pour le retraitement de 1050 tonnes par an à partir de 2010. Cela devrait conduire, , à une économie de 17% pour l’uranium naturel et un taux de recyclage de ce qui sort des réacteurs de 7,3% si EDF obtient l’autorisation de passer à 4 réacteurs pour l’uranium de retraitement et à 24 pour le MOx. Cette performance ne sera atteinte qu’en allant puiser 75 t par an dans les stocks de combustibles usés non retraités jusqu’à maintenant. Comme il n’y a qu’un tour de recyclage, ces chiffres sont très proches du maximum atteignable avec les technologies du « cycle » actuel.

A titre de comparaison, le Japon, qui a fait retraiter une partie de ses combustibles usés à l’étranger (France et Grande-Bretagne), commence tout juste à brûler du MOx et n’a réutilisé qu’une très petite quantité d’uranium de retraitement. Le gain est quasi nul alors qu’il a investi dans une usine de retraitement qu’il n’arrive pas à faire démarrer.

On peut difficilement parler de « cycle » du combustible… Le mot « chaîne » semble plus approprié.


Chaîne annuelle de l’uranium

 8100 tonnes d’uranium naturel→ Enrichissement →

1033 tonnes de combustibles neufs + 7 067 tonnes d’uranium appauvri (UA)

 CHAINE ANNUELLE DU COMBUSTIBLE 


1033 tonnes combustiblesneufs→  Réacteur→
combustibles usés :

· 850 tonnes combustibles usés sont retraitées 

· combustible usé non retraité entreposé.

Retraitement des 850 t→ 

800 t d’uranium de retraitement + 8,5 t de plutonium + déchets
ultimes

Ces 800 t d’uranium de retraitement

· 500 tonnes  matières entreposées (stock stratégique)

· 300 t envoyées à Tomsk en Russiepour réenrichissement

→ 263 tonnes d’uranium appauvri, entreposées en Russie

37 t d’uranium de recyclage enrichi (URE) → Réacteur



Retour Réacteur : 37 t URE + 8,5 plutonium (PU)


 

7 067 t d’ d’uranium appauvri (UA)

91,5 tonnes d’UA + 8,5 t de PU = 100t MOX→ réacteur

Reste 6975,5 t d’UA

→ Matières entreposées

(= stock stratégique)

 



Retour Réacteur 91,5t UA

Soit un  recyclage de 3,9 % au lieu des 96% annoncés et donc une économie d’uranium de 12% !

La perspective d’une génération IV permet de tout justifier

Les matières nucléaires non recyclées, ne sont pas considérées comme déchets, mais comme matières potentiellement valorisables. L’industrie nucléaire parie sur la génération IV des réacteurs nucléaires pour transformer ces matières en trésor qui permettrait d’avoir de l’électricité pendant des millénaires. Mais c’est déjà ce que devait faire Superphénix, avec le succès que l’on sait. A son démarrage, pleine d’espoir dans son avenir, l’industrie nucléaire avait fait miroiter son développement avant l’an 2000.  Et ces fameux réacteurs de génération IV sont des réacteurs à neutrons rapides basés sur le même principe que Superphénix. (Voir encadré sur le sujet). Bref, c’est toujours le même message : demain on rase gratis.

Même les autorités sont sceptiques : dans le nouveau Plan national de gestion des matières et déchets radioactifs (PNGMDR), elles ont demandé aux exploitants de trouver des solutions pour ces matières si la génération IV ne se faisait pas ou partiellement et que ces matières prétendument recyclables devenaient des déchets.

Mais en attendant, les combustibles non retraités, l’uranium de retraitement non utilisé et l’uranium appauvri sont entreposés, en attendant des jours meilleurs. Le devenir de près de 97,8% de l’uranium initial qui sort de la mine est en suspens. Il y a là une autre entourloupe : 97,8% de ce qui sort de la chaîne de l’uranium n’est pas utilisé, mais n’est pas considéré comme déchet ! Et Areva d’affirmer ainsi que les déchets tiennent dans une piscine olympique !

La génération IV sert donc d’abord à justifier le retraitement actuel. Parce que la France s’est enfoncée dans cette voie, elle n’a pas d’autre alternative que le succès de ces réacteurs au risque de perdre son trésor. Un peu comme un joueur qui a trop misé et qui s’enfonce de plus en plus dans l’espoir de récupérer sa mise.

Pourtant, en regardant froidement la situation, il serait préférable de garder les combustibles irradiés en entreposage le temps que la génération IV soit opérationnelle et de ne retraiter que selon le besoin. Les combustibles usés seront alors beaucoup moins radioactifs, ce qui simplifierait leur manutention et diminuerait les rejets radioactifs de l’usine de retraitement de La Hague.

Stocks de « non-déchets » accumulés

A la fin 2008, Areva détenait 22 610 tonnes d’uranium de retraitement, entreposées en majorité au Tricastin et 261 000 tonnes d’uranium appauvri d’origine naturelle. Pour connaître les stocks de combustibles usés non retraités détenus par EDF et entreposés à La Hague, il faut consulter le PNGMDR. Fin 2007, il y en avait près de 13 000 tonnes, dont 11 500 de combustibles classiques.

Le bilan des matières accumulées est compliqué par les échanges internationaux de matière. EDF s’approvisionne en uranium à l’étranger et a recours à 4 enrichisseurs différents pour son combustible. Réciproquement, Areva exporte environ la moitié de l’uranium qu’elle enrichit en France. L’uranium appauvri qui résulte de ces opérations reste la propriété de l’enrichisseur. C’est en particulier le cas pour la partie de l’uranium de retraitement qui est envoyée en Russie pour enrichissement. La loi française interdit le stockage en France de déchets étrangers, mais pas des matières valorisables. Si ces matières sont déclassées en déchet, devront-elles être renvoyées vers leur pays d’origine ? Nous n’avons pas obtenu de réponse.

En conclusion, le HCTISN est un des rares espaces où l’on peut espérer obtenir des informations non disponibles ailleurs. Malheureusement, le rapport sur le « cycle » du combustible est trop monolithique, n’autorisant aucune expression différant de l’orthodoxie officielle. Il n’a pas été possible d’y faire apparaître que moins de 4% de ce qui sort des réacteurs français est recyclé. Le Haut Comité n’a pas souhaité diffuser le rapport complémentaire des associations. C’est regrettable pour une structure qui est supposée être garante de la transparence et de l’information. Mais les chiffres qu’il donne, s’ils sont confirmés, permettent à chacun de faire le bilan du « cycle » du nucléaire.

Pour en savoir plus, vous pouvez consulter :

– le rapport du HCTISN sur http://www.hctisn.fr

les commentaires des associations sur notre site

– le PNGMDR sur le site de l’ASN : http://asn.fr

 

Voir le communiqué de presse commun ACRO, FNE (France Nature Environnement), Greenpeace du 13 juillet 2010

Voir informations sur la génération IV


[1]  HCTISN : Haut Comité à la Transparence et à l’Information sur la Sûreté Nucléaire, http://www.hctsin.fr

 Ancien lien