Feuilleton EPR2

Parce que le gouvernement a décidé d’autoriser EdF a construire un deuxième EPR, nous allons reprendre notre feuilleton sur l’EPR. Le premier feuilleton écrit avant la construction de “la tête de série” à Flamanville garde toute sa pertinence.

  1. Exportation Peu Rentable

Exportation Peu Rentable

ACROnique du nucléaire n°84, mars 2009

C’est par un communiqué [1] laconique que l’Elysée a annoncé le lancement d’un deuxième EPR, en France : « L’Etat valide le projet d’EDF de réaliser cette centrale sur le site de Penly, en Seine-Maritime. EDF réalisera cet équipement dans le cadre d’une société de projet dont il aura la majorité. GDF SUEZ sera associé à ce projet. D’autres partenaires désireux de partager l’investissement et l’approvisionnement électrique seront invités à y participer. EDF déposera dans les prochaines semaines un dossier sur ce grand projet à la commission nationale du débat public, en vue de commencer la construction en 2012 et de raccorder la centrale au réseau en 2017. Dans la perspective du développement ultérieur de la filière, l’Etat reconnaît la volonté de GDF SUEZ d’assumer la maîtrise d’ouvrage et l’exploitation de l’EPR suivant. »

Cette décision n’est justifiée ni par une nécessité de diversifier la production électrique puisque le nucléaire fournit déjà 84% de l’électricité d’EdF, ni par une nécessité de favoriser la concurrence par rapport à l’opérateur historique, puisque c’est EdF qui gagne le bras de fer contre GdF-Suez. Le président de la république a justifié sa décision lors de son déplacement à Flamanville le 6 février 2009 où un premier EPR est en construction : faire de la France une exportatrice d’électricité. « Il y a le monde à conquérir en énergie » a-t-il déclaré.

Cette décision apparaît comme un aveu d’échec de la part de celui qui voulait vendre des EPR à toute la planète. Faute de pouvoir vendre des réacteurs, on va les construire en France et exporter l’électricité. Or la France est déjà exportatrice d’électricité, comme cela est exposé en encadré et ce n’est pas sans poser de nombreux problèmes.

Dans un appel [2] d’intérêt public pour une diversification urgente du bouquet électrique français, des employés d’EdF soulignent qu’« avec près de 80% de sa production électrique d’origine nucléaire […] la France est le seul pays au monde à dépendre autant de cette source d’électricité peu modulable et donc inadaptée aux pointes de consommation. L’extrême centralisation inhérente à la technologie nucléaire, outre qu’elle entraîne des pertes d’énergie sur le réseau, constitue une cause supplémentaire de vulnérabilité potentielle de l’approvisionnement électrique, dans un contexte de multiplication des incidents et accidents, notamment liés à l’âge du parc et à certaines erreurs de conception. […]

D’une part, ses 58 réacteurs rendent notre pays notoirement excédentaire en moyens de production continue de courant (répondant aux besoins en base). La nécessité technique que ces installations fonctionnent jour et nuit – hors périodes d’arrêt pour maintenance – encourage chez nous la surconsommation électrique. L’électricité ne pouvant se stocker, cette surproduction entraîne aussi des exportations à bas prix de courant à l’étranger, lesquelles ont, dans nombre de pays, un effet de dumping dissuasif sur le développement des énergies renouvelables, qu’elles soient thermiques (biogaz, biomasse…) ou autres. Par ailleurs, le surcroît de plutonium et de déchets radioactifs correspondant à ces exportations restera bien sûr, quant à lui, stocké sur le sol français.

D’autre part, les unités de production thermiques plus souples (utilisables en périodes de pics de demande électrique sans générer le reste du temps de gaspillages ni d’incitations à la surconsommation) commencent en revanche à faire cruellement défaut – d’où les difficultés croissantes de RTE (le Réseau de transport d’électricité) pour faire face à la demande sans discontinuité. Cela oblige, lors des pointes de consommation ou d’incidents sur le réseau, à de coûteuses importations d’électricité produite à l’étranger, y compris à partir de ressources fossiles particulièrement polluantes comme le lignite ; celles-ci sont en outre souvent brûlées dans des centrales de conception dépassée, à mauvais rendement énergétique et ne répondant pas aux normes environnementales les plus récentes.

Autrement dit, au lieu d’apporter au niveau planétaire des économies nettes d’émissions de gaz carbonique (CO2), notre parc électronucléaire surdimensionné amène en pratique la France à externaliser, vers des états comme l’Allemagne ou la Pologne, des émissions massives de CO2 et d’autres polluants liées à l’exploitation ponctuelle de centrales thermiques anciennes, ce qui retarde d’autant la fermeture des plus vieilles centrales étrangères. […]

Le « Grenelle de l’Environnement » vient à juste titre d’insister sur l’impérieuse et urgente nécessité de lutter contre les dérèglements climatiques, en particulier par le biais des économies d’énergie et de l’efficacité énergétique, dont on sait désormais qu’elles ont joué, dans la baisse des émissions de CO2 françaises au cours des années 70 et 80, un rôle au moins égal à celui de la mise en service du parc électronucléaire en remplacement d’unités thermiques classiques. […]

Dès lors, on ne peut plus se contenter de construire – comme le prévoient EDF et le gouvernement – de nouvelles centrales thermiques classiques (gaz, fioul, bois…) pour assurer les pics de demande, sans réduire aussi notre parc nucléaire surdimensionné qui, notamment par les gaspillages qu’il induit, entrave toute réelle politique d’économies d’énergie, non seulement en France, mais aussi indirectement en Europe, voire ailleurs dans le monde par le mauvais exemple qu’il donne. […]

Pour toutes ces raisons, nous demandons à compter d’aujourd’hui une réduction rapide et volontariste de la part du nucléaire dans le bouquet électrique français. Cette part pourrait par exemple passer, en cinq ans, des actuels 80% à 60% de l’électricité consommée, et ce :
– en fermant les réacteurs atomiques les plus anciens, les plus coûteux en maintenance, les plus générateurs de rejets et effluents radioactifs et chimiques, les plus irradiants, démotivants et anxiogènes pour les personnels qui y travaillent et les populations environnantes, tout en assurant le maintien sur site ou la reconversion des travailleurs ;
– en leur substituant des moyens de production électrique moins centralisés, adaptés aux ressources locales (centrales à gaz en cogénération, susceptibles de fonctionner à terme avec du biogaz de méthanisation, et à coupler avec des réseaux de chaleur ; centrales à bois, ou centrales mixtes charbon/biomasse ; photovoltaïque ; éolien ; etc.). Par ailleurs, tout en respectant les normes environnementales et énergétiques les plus modernes, ces moyens de production peuvent, contrairement aux réacteurs nucléaires, répondre aux fluctuations de la demande et être mis à l’arrêt chaque fois que les nécessaires efforts d’économies d’énergie effectués par les industriels, les collectivités et les particuliers le justifieront. »

[1] Publié le 30-01-09
[2] http://www.alecoso.fr/spip.php?article64

2000 à 2007, bilans électriques français

Notes de lecture des bilans annuels publiés par le Gestionnaire du Réseau de transport d’électricité (RTE)

André Guillemette, juillet 2008

Nucléaire et indépendance énergétique, part de l’électricité nucléaire dans la consommation d’énergie en France

Source : Mémento sur l’énergie, Energy data book, CEA, Ed. 2006

Source : Mémento sur l’énergie, Energy data book, CEA, Ed. 2006

Selon la publication du CEA (CEA, 2006), la consommation totale d’énergie en France en 2005 a été de 276,5 Mtep (millions de tonnes équivalent pétrole), dont 117,5 Mtep en électricité. Sur ces 117,5 Mtep, 78,3 % sont d’origine nucléaire (CEA, 2006). La part de l’électricité nucléaire produite est donc de 33,27 % de l’énergie consommée.

Lors du débat sur l’énergie organisé par le gouvernement français en 2003, l’association Global Chance partant des mêmes consommations de l’année 2000 que “CEA 2001”, mais prenant en compte toutes les données comptables (rendements, pertes en ligne, consommation d’auxiliaires, …), évaluait la part de l’énergie nucléaire consommée à 17%, alors que les données officielles situaient cette contribution à 28% pour cette même année 2000.
feuilleton_EPR2_image2

La production d’énergie nucléaire et l’exportation d’électricité

Electricité d’origine nucléaire et exportations d’électricité

Electricité d’origine nucléaire et exportations d’électricité
Sources : EDF et RTE

En 2007, les 58 réacteurs français ont produit 428,7 TWh (TWh = 1000 milliards de Watt par heure). 56,7 TWh soldent le bilan positif des échanges d’électricité avec les pays limitrophes Italie, Suisse, Grande-Bretagne, Espagne, Allemagne. En 2007, comme les dix années précédentes l’exportation était de l’ordre de 83 TWh.
Nous avons exporté en 2007 une quantité d’électricité équivalente à la production de 8 (solde positif des échanges) à 11,5 (production en base, contractuellement exportée) réacteurs.
Ce solde positif des échanges d’électricité apparaît dès 1982, progresse rapidement jusqu’en 1990 pour rester relativement constant jusqu’à aujourd’hui, comme on peut le voir sur le graphe ci-contre.
Bilan détaillé des échanges

L’historique du solde des échanges d’électricité est présenté ci-dessous en nombre de réacteurs dédiés à l’exportation.

Sources : EDF et RTE

Sources : EDF et RTE

Dès 1984 apparaît une surcapacité équivalente à la production de 4 réacteurs. En part de la production d’origine nucléaire, l’électricité exportée varie de 10 à 20 % de cette production. Depuis 1991 le palier d’exportation varie entre l’équivalent production de 8 à 11 réacteurs.

Solde des échanges par pays
(un réacteur produit en moyenne 7,2 TWh/an)

Sources : RTE

Sources : RTE

Depuis 2004, la tendance  est à l’exportation de la production d’environ 3 réacteurs vers la Suisse, 3 réacteurs vers l’Italie, 2 réacteurs vers la Belgique, et un réacteur vers la Grande Bretagne et l’Espagne. Par contre, nous importons l’équivalent de la production d’un réacteur de l’Allemagne, pays connu pour son fort développement des énergies renouvelables … et l’engagement pour l’arrêt de son programme électronucléaire.

Commentaires

Depuis 1990, nous avons  une surcapacité  moyenne de 10 réacteurs nucléaires,  et environ 48 dédiés à l’utilisation hexagonale. De plus, 3 réacteurs sur les 4 du site de Tricastin servent uniquement à l’enrichissement du combustible, dont une grande partie est exportée : Tricastin fabrique plus du tiers de la production mondiale, l’équivalent du chargement de 100 réacteurs, soit encore presque 1,5 réacteurs dédiés à l’exportation. AREVA construit actuellement sur le site de Tricastin une nouvelle usine d’enrichissement par centrifugation (GB2) nettement moins gourmande en électricité que le procédé actuel par diffusion gazeuse : 75 MW contre 3000 MW. La nouvelle usine sera opérationnelle en 2009 (ASN, 2007)… et la production de 3 réacteurs de 900 MWe sera disponible sur le réseau en 2009, 2 ans avant la mise en service prévue (2011) de l’EPR en construction à Flamanville.
Il est aussi notable qu’un réacteur sert en permanence à pomper de l’eau (env. 7 TWh/an) pour la monter dans des réserves d’eau dont l’énergie est restituée en conduite forcée, en fonction des besoins. C’est indispensable pour pouvoir adapter l’offre à la demande.

En conclusion, 12 réacteurs sur 58, soit 20,7 % du parc nucléaire français, sont utilisés à d’autres fins que les seuls besoins énergétiques des Français depuis le début des années 1990. Cela devrait augmenter dans les années à venir de 2009 à 2011 la production de 4 réacteurs (3 x 900 MWe à Tricastin, 1 x 1600 MWe à Flamanville) va être disponible sur le réseau électrique français sans que la consommation ait progressé notablement : elle a régressé entre 2006 et 2007 (RTE, 2006 et 2007). Que faire de ces 4300 MWe disponibles en base, sinon signer là encore des contrats d’exportation pour assurer un débouché fiable à notre production nucléaire ?

Sachant que les 58 réacteurs actuels ont une durée minimale d’activité prévue de 40 ans (60 ans – espérés – pour les mêmes réacteurs nucléaires aux Etats-Unis), soit un premier besoin de remplacement en 2017  au plus tôt, nous ne percevons toujours pas encore pourquoi il a fallu démarrer de toute urgence la construction d’un réacteur EPR à Flamanville, dont la production viendra s’ajouter en 2011 à notre surcapacité chronique. Rappelons que Flamanville et Penly font partie des sites les plus éloignés des frontières suisses et italiennes, limites de résidence des principaux clients d’EDF.

Bibliographie

ASN, 2007. Rapport annuel : La sûreté et la radioprotection en France en 2007
CEA, 2006. Mémento sur l’énergie. CEA, édition 2006.
Global Chance, 2003. Les cahiers de Global Chance. Petit mémento énergétique. Eléments pour un débat sur l’énergie en France. Janvier 2003.
RTE, 2000 à 2007. Résultats techniques du secteur électrique en France. RTE, Gestionnaire du Réseau de Transport d’Electricité. Années 2000 à 2007.

Ancien lien

Rapport d’étude sur l’origine des éléments de la famille de l’uranium-235 dans les environs de la centrale de Brennilis (29)

Rapport d’étude sur l’origine des éléments de la famille de l’uranium-235 dans les environs de la centrale de Brennilis (29)

« Faut-il tout dire pour bien informer ? »

Communiqué de presse ACRO du 3 avril 2007


L’ANDRA (Agence Nationale pour la Gestion des Déchets Radioactifs) organise le 5 avril à Cherbourg Octeville un colloque sur comment « Mieux répondre aux attentes d’information du public ». La principale question posée aux intervenants et re-débattue le soir est : « faut-il tout dire pour bien informer ? ».

L’ANDRA aurait-elle quelque chose à cacher ? Aurait-elle honte de divulguer certaines informations ? Alors que les autorités s’enorgueillent d’avoir fait voter une nouvelle loi sur la « transparence » nucléaire, dont les décrets d’application sont en cours de préparation, cette question en forme d’aveux n’est pas innocente.

Les droits français et européen sont très ambitieux sur ce sujet. La charte de l’environnement, maintenant adossée à la constitution française, impose que « toute personne a le devoir de prendre part à la préservation et à l’amélioration de l’environnement ». Afin de pouvoir exercer ce devoir, « toute personne a le droit, dans les limites définies par la loi, d’accéder aux informations relatives à l’environnement détenues par les autorités publiques et de participer à l’élaboration des décisions publiques ayant une incidence sur l’environnement ». Quant à la convention d’Aarhus, ratifiée en 2002 par la France, elle est beaucoup plus précise et très contraignante sur ce sujet.

Alors que la question primordiale est la mise en pratique de la convention d’Aarhus, malgré les réticences des pouvoirs publics, l’ANDRA remet-elle en cause les bases même de cette démocratie participative appliquée aux questions environnementales ?

Ces nouvelles dispositions, qui ne sont pas dues à une poignée d’« écolos » idéalistes, voire « illuminés », tardent à être appliquées. Ainsi, l’ANCLI a demandé la mise en place d’une Commission Pluraliste et Permanente de Débat sur les déchets et matières radioactifs qui doit accompagner les dix années de recherche prévues par la nouvelle loi sur les déchets. Malheureusement, personne ne veut en entendre parler. On en est encore à se demander si une agence nationale doit tout dire.

Par le passé, l’ANDRA a eu beaucoup de choses à cacher, n’hésitant pas à porter plainte contre l’ACRO quand elle osait divulguer les dysfonctionnements du Centre de Stockage de la Manche. Le fonctionnement à huis clos a permis tous les abus et nous en payons encore aujourd’hui les conséquences. Nos descendants et les générations futures aussi. Mais chut, il ne faut pas leur dire…

Ancien lien

Résultats de la surveillance du littoral et des rivières normands 2005

ACROnique du nucléaire n°76, mars 2007

RESULTATS 2005 DE LA SURVEILLANCE DES NIVEAUX DE LA RADIOACTIVITE ARTIFICIELLE D’ECOSYSTEMES AQUATIQUES APPARTENANT AU BASSIN SEINE-NORMANDIE

Gestion des déchets radioactifs : les leçons du Centre de Stockage de la Manche (C.S.M)

Centre Sans Mémoire, Centre Sans Avenir ?

Rapport d’étude réalisé à la demande de Greenpeace France
23 mai 2006


Synthèse : les leçons du CSM

« Le passé était mort, le futur inimaginable », George Orwell, 1984

Pour le CEA, qui a en eu la responsabilité durant toute sa phase active, « le site de la Manche, après vingt-cinq ans de bons et loyaux services, figure désormais comme une référence technique internationale dans le stockage des déchets ». A l’heure où est débattu l’avenir des déchets nucléaires français, il nous paraît important de tirer les leçons de la gestion de ce centre.

Parce que le stockage des déchets y a précédé la réglementation en la matière, ce centre ne satisfait plus aux normes actuelles concernant le stockage en surface. On y a stocké et entreposé tout et n’importe quoi, sur les crêtes des nappes phréatiques et sans aucune protection vis à vis des intempéries. Pour les déchets les plus anciens, l’inventaire est des plus fantaisistes et fort probablement en dessous de la réalité. Mais le plus grave, est que les centres du CEA se soient débarrassés rapidement de tous les déchets gênants avant chaque durcissement de la réglementation. La Commission Turpin l’a bien mis en évidence à propos du plutonium. Ce délit d’initié est extrêmement choquant car c’était dans ce même organisme qu’étaient élaborées les connaissances impliquant de revoir les procédures. Pas vu, pas pris. Plus de 10% des volumes stockées sur le centre sont d’origine étrangère malgré la loi française qui interdit cette pratique.

De part les éléments à vie longue qu’il contient en grande quantité et les toxiques chimiques, le Centre Manche ne sera jamais banalisable et est là pour l’éternité. Son statut se distingue donc du Centre de l’Aube (qui ne reçoit que des déchets triés respectant des critères stricts) et s’apparente plus à ce que pourrait être un stockage souterrain à l’abri des regards qui est supposé accueillir tous les déchets gênants. La barrière géologique ne constitue qu’un décalage temporel dans l’apparition des problèmes.

A cause de sa gestion empirique, il porte atteinte à l’environnement. Suite à des incidents à répétition qui viennent s’ajouter à un relargage diffus en continu, les nappes phréatiques et de nombreux exutoires sont fortement contaminés en tritium. Force est de constater qu’une information sur cette pollution chronique a longtemps manqué et encore aujourd’hui, un bilan précis de son impact reste à faire. Pour autant, la situation pourrait s’aggraver à long terme car les emballages des déchets les plus anciens, qui contiennent aussi les éléments les plus nocifs, ne sont pas garantis sur de si longues périodes. Lorsqu’une nouvelle contamination sera détectée, il sera trop tard.

Cependant, il n’est pas prévu de démanteler ce centre, même partiellement. L’argument généralement avancé, outre le coût économique, est que le risque sanitaire lié à l’opération serait supérieur au risque lié à son impact sur l’environnement. Surtout, il n’y a pas d’autre solution pour les déchets extraits qui ne sauraient être acceptés au Centre de l’Aube. Il est donc plus confortable pour les opérateurs du nucléaire et les pouvoirs publics de considérer ce problème comme réglé.

Comment léguer alors ce centre aux générations futures ? Comment en transmettre la mémoire si même notre génération ne sait plus ce qu’il contient exactement ? Surtout, comment leur permettre d’avoir une opinion sur son avenir qui diffère de celle qui est prévue actuellement ? Ces questions fondamentales doivent être prises en compte pour tous les autres déchets radioactifs.

Cet exemple du Centre de Stockage de la Manche montre qu’une gestion passive à long terme basée sur l’oubli est vaine. La réversibilité supposée des stockages à venir ne fait que reporter de quelques générations le dilemme de la fermeture, sans le résoudre.

La protection des générations futures, fait l’objet d’un consensus quand il s’agit de gestion des déchets nucléaires. Mais dès qu’il s’agit de la génération actuelle, le consensus disparaît… Le public est le grand oublié du projet de loi sur les déchets présenté par le gouvernement qui méprise la consultation qu’il a lui même voulue. Or, si le Centre Manche est un centre sans mémoire, c’est parce que sa gestion était confinée et il est important de ne pas renouveler ce huis clos.

Le bien-être des générations futures, pour lesquelles le fardeau de la gestion des déchets doit être limité, apparaît donc souvent comme un argument utilisé sans réflexion pour faire accepter tout et n’importe quoi. Leur laisser des moyens d’agir signifie garder la mémoire de ce fardeau. Or, les exemples historiques montrent que c’est grâce à la redondance de l’information gardée sous plusieurs formes qu’elle peut être transmise de générations en générations en faisant face aux aléas. Il y a donc un impératif moral à partager avec la population la connaissance sur les déchets nucléaires. Les débats actuels sur le nucléaire n’ont malheureusement pas mobilisé les foules car les citoyens avaient le sentiment de n’avoir aucune emprise sur le processus de décision. Pourquoi s’investir si les décisions sont déjà prises ? Il importe donc de mettre en place un mécanisme de démocratisation de la gestion des déchets nucléaires pour en garantir la mémoire.

L’autre enjeu est de transmettre une mémoire qui traduit honnêtement l’état des lieux, ce qui n’est pas le cas du Centre Manche. Là encore, la démocratisation des processus de décision avec une ouverture plus en amont, laissant le temps à la société civile de s’approprier la problématique est indispensable. C’est dans ce sens que tente d’œuvrer l’ACRO depuis sa création.

En conclusion, la sauvegarde des générations futures en matière de gestion de déchets nucléaires passe par une meilleure gouvernance de la gestion actuelle, s’appuyant sur une plus grande démocratie participative. Il serait dommage et dangereux que le projet de loi actuel loupe ce coche pour dix ans encore. D’autant plus qu’il y a malheureusement un immense retard à combler et que les déchets comme ceux du Centre Manche, dont le sort est officiellement réglé, sont encore à prendre en compte.


Résumé de la 1ère partie : L’univers du Centre de Stockage de la Manche

Le Centre de Stockage de la Manche a été construit dans la partie Est de l’usine de retraitement de La Hague, à un endroit qui s’appelle le « Haut Marais », zone humide par excellence. C’est sans doute le plus mauvais choix quand on sait que l’eau est le principal ennemi de la sûreté. Les premiers déchets ont été mis à même la terre, puis dans des tranchées bétonnées, régulièrement inondées. Certains de ces ouvrages ont été démantelés, d’autres sont encore là, à la crête des nappes phréatiques. La pratique ayant précédé la réglementation, l’empirisme qui a guidé l’édification de ce centre suscite déjà de nombreuses inquiétudes qui devraient s’aggraver dans l’avenir.

Les structures d’accueil et la qualité des déchets ont évolué au cours du temps vers plus de rigueur. Mais, avant chaque durcissement de la réglementation, le CEA a renvoyé au CSM des déchets qui ne pourraient plus être acceptés par la suite. Ce délit d’initié est d’autant plus choquant que c’est dans ce même organisme qu’étaient élaborées les nouvelles règles. L’ACRO avait aussi dénoncé des pratiques similaires juste avant la fermeture du site en 1994. De nos jours, le centre Manche contient de nombreux éléments à vie longue qui ne sont plus acceptés sur le centre de l’Aube qui a pris le relais. Il y a notamment près de 100 kg de plutonium, ainsi que de nombreux autres émetteurs alpha particulièrement toxiques en cas de contamination. Si l’on ajoute à cela les toxiques chimiques qui ne disparaîtront pas avec le temps, dont près de 20 tonnes de plomb et une tonne de mercure, le centre Manche ne pourra jamais être banalisé. Au moment de sa fermeture, l’ANDRA annonçait sans vergogne que ce centre pourrait être rendu à la nature au bout de 300 ans et que la couverture était définitive.

L’inventaire des déchets stockés n’est pas connu avec précision. Durant les premières années, seuls les bordereaux des expéditeurs faisaient foi. Une tempête a effacé une partie de cette mémoire et les informations concernant les premières années ne sont pas fiables. Certaines structures d’accueil non plus et une partie des déchets échappent au système de surveillance mis en place. Un employé de l’ANDRA à la retraite va jusqu’à évoquer des risques d’effondrement. En cas de problème, ce sont les nappes phréatiques qui seront touchées et il sera trop tard pour agir. Selon nos estimations, ce sont plus de 10% des 527 217 m3 de déchets stockés qui sont d’origine étrangère, en violation flagrante de la législation française. Alors que la question du stockage en surface est officiellement considérée comme « réglée », il est légitime de s’interroger sur l’avenir du centre Manche. Il est tout aussi nécessaire de tirer les leçons de ses déboires pour les autres déchets en attente de solution.

Sans la vigilance citoyenne des associations et les révélations d’un lanceur d’alerte qui a envoyé anonymement des documents à l’ACRO, c’est le plan de l’ANDRA qui aurait été avalisé par les autorités. La commission pluraliste qui a enquêté après les révélations de l’ACRO en 1995 a estimé que ce stockage est irréversible. En se basant sur une étude de l’ANDRA, elle estime en effet qu’aucune reprise des déchets n’est raisonnable en raison des coûts sanitaires et financiers. Surtout, il n’existe aucune solution pour une partie de ces déchets qui ne sauraient être acceptés au centre de l’Aube.

Les exigences en matière d’environnement ont changé durant les 25 années d’exploitation du centre Manche. Ces exigences devraient évoluer encore plus sur des échelles de temps impliquant plusieurs générations. La réversibilité des stockages est donc une contrainte morale qui découle du principe de précaution. Elle est généralement pensée comme un moyen de rendre les projets socialement plus acceptables par les autorités. Mais la réversibilité n’est pas seulement un problème technique et doit conduire à repenser entièrement la gestion des matières radioactives de façon démocratique. L’option d’un entreposage pérennisé avait les faveurs du public lors du débat national, mais est malheureusement ignorée par les autorités qui préfèrent une stratégie basée sur l’oubli.

Il en est de même pour l’avenir du centre Manche. Il est prévu, qu’après la phase de surveillance actuelle, une nouvelle couverture soit mise en place afin de passer à une phase plus passive. La décision de ne pas reprendre tout ou une partie des déchets est basée sur des études de l’ANDRA qui n’ont pas été contre-expertisées dans le détail. Nous avons, vainement, demandé à la commission de surveillance du centre de promouvoir la mise en place d’une réflexion pluraliste qui aurait à se pencher sur les risques évoqués avant de décider de fermer définitivement le site. Cette revendication nous tient particulièrement à cœur avant de décider de léguer une telle menace aux générations futures.


Résumé de la 2ème partie : La pollution des écosystèmes aquatiques par le tritium

Par le passé, la Sainte-Hélène qui s’écoule non loin du Centre de Stockage de la Manche (CSM) avait une teneur en césium-137, de 100 à 1000 fois plus élevée que dans les autres cours d’eau voisins. Cette anomalie s’accompagnait de l’existence d’autres produits de fission et de teneurs impressionnantes en plutonium : les sédiments contenaient plus de 140 Bq/kg de plutonium-238, soit 5000 fois plus que dans ceux du Rhône en aval des installations de Creys-Malville (Superphénix). Le CSM en était à l’origine. Depuis les causes ont été maîtrisées et il ne subsiste plus que les vestiges de ces anciennes pollutions massives.

Mais de tout temps, du tritium (hydrogène radioactif) fût trouvé. Aujourd’hui encore, de nombreux cours d’eau, aquifères, résurgences, puits sont concernés.

Dès l’ouverture du centre, on a voulu stocker de grandes quantités de tritium. Dans 6 petites cases de l’ouvrage dénommé TB2, l’équivalent de trois, peut-être 15, années de rejets tritiés de l’ensemble du parc électronucléaire français actuel a été entreposé. Les estimations varient avec les époques, soulignant la méconnaissance du contenu des déchets.

Mais ce tritium n’a pas daigné rester à sa place, et ce fût le point de départ, en octobre 1976, d’une contamination massive des eaux souterraines et superficielles. Tout ce qui pu être repris l’a été, et les quantités stockés ont été réduites de manière drastique.

Cet incident à mis en exergue, outre des dysfonctionnements et une inadaptation du procédé de stockage, la diffusion du tritium à travers les colis et ouvrages. Ce phénomène, qui a débuté dès la réception des premiers déchets tritiés, existe encore de nos jours et cessera quand il n’y aura plus de tritium dans les colis.
Parce que le gestionnaire du centre s’est refusé à protéger correctement les déchets des intempéries durant les 25 années d’exploitation, y compris durant la période où il déployait des solutions sur son centre de l’Aube, la situation s’est aggravée à La Hague. La lixiviation des déchets par les eaux de pluie a augmenté considérablement les relâchements.

Le CSM s’est donc toujours « vidé », et se « vide » encore de nos jours, de son tritium par d’autres voies que celle de la décroissance radioactive, principe fondamental de l’élimination des déchets nucléaires. L’analyse des données postérieures à 1986, les seules disponibles, tend à suggérer qu’au moins 20% du tritium stocké se seraient « évanouis » dans l’environnement à la date d’aujourd’hui. Dans une note datée du 18/12/92, le gestionnaire estimait même à 1850 TBq [130% de l’inventaire tritié du site (ndlr)] l’activité perdue dans le sol à la suite de l’incident de 1976.

Libéré des ouvrages, ce tritium suit principalement les voies naturelles de l’eau. Il tend à rejoindre les aquifères sous-jacents mais également l’atmosphère. Il est donc voué à être « éliminé », d’une manière ou d’une autre, par dilution et dispersion dans le milieu naturel. Dans l’année qui suit l’incident d’octobre 76, la contamination des eaux souterraines a pu avoisiner les 600 000 Bq/L et celle des eaux de la Sainte-Hélène plus de 10 000 Bq/L. On pense le pire passé. En 1983, on atteint 6 millions de Bq/L dans un aquifère! Expérimentation ? Incident ? Accident ? Le public et les riverains ne savent toujours pas. Tout comme à l’époque ils ne savent pas qu’il est procédé à des rejets dits « concertés » dans la Sainte-Hélène, lesquelles conduisent en octobre 1982 à une contamination des eaux de l’ordre de 50 000 Bq/L.

Le dernier colis livré, la couverture mise en place, les indicateurs témoignent alors de l’avènement d’un processus d’amélioration de la qualité radiologique des eaux souterraines.

En l’absence de rejets industriels ou d’aléas, la teneur des eaux en tritium doit être de l’ordre de 1 Bq/L. Sur le plan sanitaire, l’OMS considère depuis 1993 que les eaux destinées à la consommation humaine ne devraient pas avoir  une teneur en tritium supérieure à 7800 Bq/L. Quant à l’Europe, à partir de 1998, elle s’est fixée pour objectif que ces mêmes eaux ne dépassent pas 100 Bq/L.

En 2005, La pollution n’a pas encore disparu. Elle a globalement diminué. Pour autant la contamination des eaux souterraines contrôlées peut encore atteindre 190 000 Bq/L. Et 20% des aquifères contaminés ne témoignent pas de la diminution attendue si on conjugue la décroissance radioactive au renouvellement des eaux. Fait étrange, certains tendent même à augmenter.

Durant toutes ces années, la pollution par le tritium devient insidieuse. Elle se répand géographiquement sur le versant nord. Elle atteint des puits, des résurgences et les principaux cours d’eau drainant le bassin versant. Actuellement, tous les cours d’eau (les Roteures, la Sainte-Hélène et le Grand Bel) ont en commun d’être contaminés par le tritium, à des niveaux variables compris entre une dizaine et plusieurs centaines de becquerels par litre. Pour les deux premiers, les résurgences le long du premier kilomètre apportent des eaux bien plus contaminées qu’elles ne le sont dans le cours d’eau au même endroit. A quelques centaines de mètres en aval de la source de la Sainte-Hélène, on mesurait jusqu’à 700 Bq/L de tritium dans une résurgence en 2003. Et cette situation contraste peu avec celle observée par l’ACRO il y a une dizaine d’années, cette fois au pied d’une maison familiale. Dans le cas du Grand Bel, pollué à la source, là encore la concentration en tritium des eaux n’a pas évolué depuis 1994 ! Elle est invariablement de 750 ± 100 Bq/L à la source.

Les constats de ces dernières années posent question. Pourquoi la contamination par le tritium n’a pas décru drastiquement comme on aurait pu s’y attendre si on conjugue la dilution et la décroissance radioactive ? Ne considérant que le phénomène de décroissance radioactive, les niveaux auraient dû diminuer de 50% par rapport à 1994. Or il sont sensiblement les mêmes à certains endroits, ce qui suppose que la quantité de tritium mobilisé a augmenté.

Certes, les eaux des résurgences et de cours d’eau ne sont pas utilisées directement pour la consommation humaine, mais elles le sont pour le bétail et même le jardin. Dans le cas d’une vache alimentée de manière chronique avec de l’eau tritiée, des transferts existent vers le lait. Ils sont confirmés dans La Hague lorsqu’on se réfère aux contrôles effectués sur le lait par un autre opérateur du nucléaire que l’ANDRA, cette dernière n’effectuant aucun contrôle de cette nature et ce depuis le départ. Et le bilan des transferts ne s’arrête pas là. Le tritium, hydrogène radioactif, « s’échange » et entre dans la composition de la matière organique, donc de la vie. Chair, graisse, légume, etc. peuvent être concernés. Les voies d’atteintes à l’homme se multiplient alors. Faut-il encore vouloir les connaître.

Apurer la pollution des écosystèmes aquatiques est une nécessité morale. Il n’est pas acceptable de voir le gestionnaire d’un centre de stockage de déchets nucléaires démissionner devant un élément radioactif comme le  tritium qu’il n’a pu contenir sur son site et l’abandonner au pied des maisons, au fond des champs. Il est obligatoire a minima d’étudier, comme le demande l’ACRO, la possibilité de recourir à la méthode éprouvée du pompage dans la nappe avec rejet en mer dans l’espoir d’obtenir une diminution progressive de la contamination des eaux de surfaces et de gérer de manière contrôlée et organisée les flux de radioactivité artificielle en direction de l’environnement.


Rapport d’analyse

Dosage du tritium dans les eaux souterraines pompées le 23 mai 2006 au niveau du piézomètre 113 à proximité du centre de stockage de la Manche

Echantillon Concentration en Bq/L
début
de pompage
13 200
± 900
fin de
pompage
16 800
± 1 100

Télécharger le rapport d’analyse

Dosage du tritium dans les eaux souterraines suite à un deuxième prélèvement effectué par Greenpeace Hollande le 8 novembre 2006 au niveau du même piézomètre.

Echantillon Concentration en Bq/L
Première
cuillère
18 700
± 1 100
Deuxième
cuillère
18 100
± 1 100
Après
pompage 1000 L
18 100
± 1 100
Après
pompage 2000 L
20 000
± 1 200
Après
pompage 3000 L
20 200
± 1 300
Après
pompage 4000 L
20 600
± 1 200

Télécharger le rapport d’analyse

Ancien lien

Le carbone 14 dans l’environnement des usines de retraitement de La Hague

Le carbone 14 dans l’environnement des usines de retraitement de La Hague

Surveillance citoyenne de la radioactivité en Normandie

Synthèse des résultats d’analyse gamma du premier semestre 2004 du Réseau cItoyen de Veille, d’Information et d’Evaluation RadioEcologique (RIVIERE)
ACROnique du nucléaire n°72, mars 2006


Préambuleriviere04
Les résultats présentés par la suite s’inscrivent dans la continuité de précédentes évaluations réalisées depuis 1997 à l’échelle du bassin Seine-Normandie et depuis 1988 dans la région de la Hague. Le but de ce travail est de renseigner sur l’état du milieu aquatique naturel par rapport à la pression qu’exercent l’industrie nucléaire civile et militaire mais également (et plus largement) les utilisateurs de radioactivité. Limitée à l’analyse des radionucléides émetteurs gamma comme le césium-137, l’évaluation concerne les eaux marines du littoral normand (entre Cancale et le Tréport), les principaux cours d’eau qui les alimentent comme la Seine ou l’Orne et enfin les écosystèmes aquatiques (influencés ou susceptibles de l’être) dans la région de la Hague, non loin des usines de retraitement et du centre de stockage de déchets nucléaires (CSM).

Il est nécessaire de bien mesurer la portée de ce travail. Il s’agit avant tout de veille environnementale et non sanitaire. Le travail n’est pas structuré pour répondre sur le plan de la santé même si des éléments d’information peuvent être retirés pour alimenter une telle réflexion, notamment à travers l’analyse des mollusques. Après quoi, ce suivi n’est pas exercé dans l’absolu, c’est-à-dire avec pour objectif d’analyser toutes les contributions possibles et leur répercussions sur l’ensemble des compartiments de l’environnement, quelque soit l’échelle de temps et d’espace. Des polluents majeurs comme les isotopes du plutonium ou le carbone-14 ne sont pas recherchés faute de moyens. Enfin, on cherche à obtenir une vue générale de la pression exercée par les activités humaines et plus particulièrement à connaître la tendance des niveaux de la radioactivité : est-on dans une phase d’augmentation ou pas ?

La méthodologie choisie s’appuie sur l’expérience du laboratoire dans ce domaine, plus d’une quinzaine d’années, et sur les pratiques usuelles d’organismes d’expertises (comme l’IRSN). Par ailleurs, les normes existantes (particulièrement celles de la série M60-780) sont mises à profit.

D’une manière générale, l’approche consiste à effectuer des prélèvements in situ d’échantillons (indicateurs) biologiques et inertes pour rendre compte de la qualité du milieu aquatique ; aucune analyse des eaux n’est donc réalisée. Les échantillons collectés subissent traitement et analyse au laboratoire pour in fine, révéler les radionucléides émettant un rayonnement gamma, qu’ils aient une origine naturelle ou artificielle. Mais par la suite, seuls les résultats concernant la radioactivité artificielle sont présentés.

Les indicateurs de l’environnement utilisés pour réaliser ce suivi sont de nature différente. En milieu marin, l’algue brune appartenant à l’espèce Fucus serratus (varech commun) et le mollusque du genre Patella sp. (bernique ou patelle) constituent les bioindicateurs systématiquement prélevés en plus des vases collectées dans les avants ports. En milieu aquatique terrestre ou dulcicole, ce sont les mousses aquatiques du genre Fontinalis sp. (mousses des fontaines) qui sont échantillonnées comme bioindicateurs en plus des sédiments.
Tous ces indicateurs, réputés de longue date pour ce genre d’évaluation, facilitent la détection des radioéléments et offrent l’avantage de couvrir un large spectre de polluants. Par ailleurs, de longues séries de résultats et de nombreux éléments de comparaison sont disponibles dans la littérature.

La fréquence des prélèvements dépend du lieu et de l’indicateur analysé. Dans les sédiments par exemple, l’analyse est annuelle en raison du délai de latence connu. A contrario, les analyses seront semestrielles dans les végétaux aquatiques comme les algues ou les mousses.

Résultats obtenus pour l’année 2004 dans les cours d’eau

Dans les environs des installations nucléaires de la Hague, comme à plus grande distance, c’est avant tout du césium-137(137Cs) qui est mis en évidence dans les cours d’eau. Hormis dans la Sainte-Hélène, cours d’eau connu pour être perturbé par les activités nucléaires, les concentrations mesurées en césium-137, de l’ordre de quelques becquerel par kilogramme de matière sèche (Bq/kg sec) sont comparables et témoignent des retombées antérieures et postérieures à l’accident de Tchernobyl, notamment des essais nucléaires atmosphériques des années 50-60. La variabilité des concentrations en césium-137 est essentiellement due à la texture même des sédiments ; la proportion de particules fines et la quantité de matière organique, facteurs influant, différent d’un lieu à l’autre.

Dans la région de la Hague, un excès de radioactivité artificielle est visible mais circonscrit uniquement à la Sainte-Hélène. Il transparaît d’abord dans le césium-137, lequel dépasse les niveaux usuels d’un facteur 10, puis dans la présence d’autres radioéléments comme le cobalt-60 (60Co) ou le ruthénium-rhodium 106 (106RuRh). On note également la présence d’iode-129 (129I). Ces polluants trouvent leur origine principalement dans les rejets gazeux des usines de retraitement présentes : retombés sur le sol des 300ha que comptent les usines, ces radioéléments sont ensuite entraînés avec les eaux de ruissellement dont l’un des exutoires est le cours d’eau Sainte-Hélène.

En aval de la centrale nucléaire de Nogent-sur-Seine, là encore il y a une légère augmentation de la radioactivité artificielle, circonscrite aux environs immédiats des réacteurs. Toutefois deux origines doivent être distinguées. Si le cobalt-58 (58Co) provient des rejets d’effluents liquides de la centrale, en revanche l’iode-131 (également présent dans d’autres cours d’eau très éloignés) traduit des contributions d’origine médicale (diagnostic ou thérapie ambulatoire).
Pour conclure, les niveaux mesurés sont voisins de ceux relevés lors des semestres précédents sauf dans le cas de l’iode-131. Ce radioélément artificiel introduit dans l’environnement principalement par les patients est à l’origine de situations radiologiques très contrastés d’un semestre à l’autre. Enfin, on peut signaler que les concentrations relevées autour des installations nucléaires de la Hague et de Nogent-sur-Seine ne sont pas les stigmates d’un incident passé mais la résultante de rejets en fonctionnement normal.

Sédiments du cours d’eau Ste-Hélène (Hague)
Date 20 mars 2004 20 mars 2004 23 juin 2004 26 juin 2004
Localisation La Brasserie
Station (code) ST10 ST12 STB ST10
Activité des radionucléides artificiels en Bq/kg sec
60Co 6,3 ± 2,0 < 0,5 < 0,6 3,3 ± 1,6
137Cs 55,6 ± 7,1 60,3 ± 7,1 48,0 ± 5,7 56,7 ± 7,1
241Am 4,3 ± 1,5 0,79 ± 0,44 < 1,1 < 2,5
Sédiments prélevés dans différents cours d’eau de La Hague
Date 26 juin 04 26 juin 04 26 juin 04 26 juin 04 26 juin 04 20 mars 04 20 mars 04 26 juin 04 26 juin 04 26 juin 04 26 juin 04
Ruisseau Les Landes Les Combes Les Roteures Herquemoulin Le Moulin Moulin Vaux La Vallace Les Delles Le Grand Bel La Vallace Vautier
Station (code) LAN COM ROT HER1 MP VAU VAL2 DEL GB21 VAL1 VAU
Activité des radionucléides artificiels en Bq/kg sec
60Co < 0,3 < 0,5 < 0,6 < 0,6 < 0,6 < 0,5 < 0,5 < 0,6 < 0,5 < 0,5 < 0,4
137Cs 4,9 ± 0,6 5,6 ± 0,8 4,5 ± 0,7 8,4 ± 1,1 7,8 ± 1,1 5,0 ± 0,7 3,6 ± 0,6 4,7 ± 0,7 2,0 ± 0,4 4,4 ± 0,7 3,4 ± 0,5
241Am < 0,5 < 0,9 < 1,1 < 1,0 < 1,2 < 1,0 < 1,0 < 1,2 < 1,0 < 1,0 < 0,7
Sédiments prélevés dans différents cours d’eau hors Hague
Date 16 mars 04 15 mars 04 15 mars 04 16 mars 04 27 mai 04 27 mai 04
Rivière La Sarthe La Touques La Risle L’Orne La Seine La Seine
Localisation aval Alençon (61) aval Lisieux (14) aval Brionne (76) aval Argentan (61) Nogent (10) Marnay (10)
Station (code) SAR TOU RIS ORN aval CNPE amont CNPE
Activité des radionucléides artificiels en Bq/kg sec
60Co < 0,4 < 0,5 < 0,6 < 0,5 < 1,9 < 0,4
137Cs 0,5 ± 0,2 1,7 ± 0,4 0,8 ± 0,3 1,1 ± 0,3 3,2 ± 1,0 0,6 ± 0,2
241Am < 0,8 < 0,9 < 0,9 < 0,8 < 1,5 < 0,6
Mousses aquatiques prélevées dans des cours d’eau influencés par des INB
Date 22 mars 04 22 mars 04 23 juin 04 27 mai 04
Rivière Ste
Hélène
La Seine
Localisation Déversoir (50) La Brasserie(50) La Brasserie Nogent (10) Marnay (10) Varennes (77)
Activité des radionucléides artificiels en Bq/kg sec
58Co < 4,6 < 4,2 < 6,0 18,2 ± 2,5 < 4,2 < 3,2
60Co < 5,0 11,5 ± 2,9 8,2 ± 3,8 < 2,0 < 3,9 < 2,9
106Ru-Rh 87 ± 45 < 81 < 120 < 33 < 72 < 53
129I identifié dans tous les échantillons non identifié
131I < 4,7 < 4,7 < 6,7 6,0 ± 1,3 4,6 ± 2,8 < 4,5
137Cs 18,6 ± 3,8 31,6 ± 4,9 18,9 ± 4,8 < 2,0 < 4,4 < 3,3
241Am < 5,5 6,3 ± 2,7 < 8,8 < 2,0 < 4,0 < 3,1
Mousses aquatiques prélevées dans des cours d’eau non influencés par des INB
Date 16 mars 04 15 mars 04 15 mars 04 7 avril 04
Rivière La Sarthe La Touques La Risle La Sienne La Sélune La Vire
Localisation aval Alençon (61) aval Lisieux (14) aval Brionne (76) aval Villedieu (50) aval St Hilaire (50) aval Vire (50)
Activité des radionucléides artificiels en Bq/kg sec
58Co < 4,7 < 3,0 < 3,7 < 5,5 < 4,8 < 4,3
60Co < 5,0 < 3,4 < 3,7 < 6,0 < 4,6 < 4,6
106Ru-Rh < 83 < 55 < 65 < 106 < 81 < 78
129I < 4,0 < 3,5 < 4,8 < 7,9 < 5,9 < 5,5
131I 277 ± 42 4,9 ± 2,0 < 6,2 < 5,7 < 5,0 < 5,1
137Cs < 4,7 < 3,6 < 3,9 < 6,7 < 5,1 < 4,9
241Am < 4 < 3,4 < 3,7 < 6,6 < 4,4 < 4,7

Résultats obtenus pour le premier semestre 2004 en milieu marin

Entre Granville et Saint-Valéry-en-Caux, soit le long de plus de 500 km de côtes, quatre radioéléments sont systématiquement détectés : cobalt-60, iode-129, césium-137 et américium-241. A proximité de l’émissaire de rejets en mer des usines de retraitement de la Hague, le niveau de la radioactivité artificielle augmente, notamment avec la présence de ruthénium-rhodium 106. Hormis pour le césium-137 dont une proportion plus ou moins importante provient des retombées antérieures et postérieures à l’accident de Tchernobyl, tous ces radioéléments trouvent leur origines dans les rejets en mer des usines cités ci-dessus.
La situation radiologique est très voisine de celle observée les semestres précédents. On peut donc parler d’état stationnaire, lequel, rappelons-le, s’est nettement amélioré au fil des années si on prend en référence la situation radiologique constatée au milieu des années 80. Soulignons également que l’impact des rejets des centrales nucléaires côtières n’est pas perceptible.

Algues brunes (fucus serratus) prélevées du 4 au 7 avril 2004
Lieu Granville (50) Carteret (50) Baie d’Ecalgrain (50) Fermanville (50) St Vaast la Houge (50) Port en Bessin (14) Fécamp (76) St Valéry en Caux (76)
Localisation plage plage plage plage port plage port plage
Activité
des radionucléides artificiels en Bq/kg sec
60Co 0,9 ± 0,4 1,5 ± 0,4 3,3 ± 0,6 1,5 ± 0,4 1,3 ± 0,4 1,0 ± 0,4 0,5 ± 0,3 1,2 ± 0,4
106Ru-Rh < 8,7 < 7,8 16,8 ± 4,7 < 7,9 < 8,4 < 8,2 < 8,4 < 8,3
129I identifié dans tous les échantillons, mais non quantifié
137Cs < 0,6 < 0,5 < 0,5 < 0,5 0,62 ± 0,27 < 0,5 < 0,6 < 0,6
Sédiments marins (vase) prélevés du 4 au 7 avril 2004
Lieu Granville (50) Carteret (50) Fermanville (50) St Vaast la Houge (50) Port en Bessin (14) La Havre (76) St Valéry en Caux (76)
Localisation port
Activité des radionucléides artificiels en Bq/kg sec
60Co 1,7 ± 0,4 2,8 ± 0,5 4,7 ± 0,9 1,1 ± 0,3 7,7 ± 1,1 3,3 ± 0,5 3,5 ± 0,6
106Ru-Rh < 11 < 7,4 < 15 < 7,8 < 9,0 < 4,7 < 7,6
129I non recherché
137Cs 1,6 ± 0,4 1,3 ± 0,3 2,1 ± 0,6 1,2 ± 0,3 8,0 ± 1,1 10,0 ± 1,2 4,8 ± 0,7
241Am 10,6 ± 5,3 1,1 ± 0,4 4,5 ± 1,1 1,2 ± 0,4 2,6 ± 0,6 1,0 ± 0,3 1,2 ± 0,4
Patelles prélevées du 4 au 7 avril 2004
Lieu Granville (50) Carteret (50) Baie d’Ecalgrain (50) Fermanville (50) Port en Bessin (14) St Valéry en Caux (76)
Localisation plage
Activité des radionucléides artificiels en Bq/kg sec
60Co < 0,6 0,86 ± 0,3 0,69 ± 0,33 1,3 ± 0,3 0,83 ± 0,39 < 0,5
106Ru-Rh < 7,9 < 7,8 12,7 ± 5,0 10,4 ± 3,5 < 11 < 8,3
110mAg < 0,5 < 0,5 < 0,5 < 0,4 < 0,6 < 0,5
129I non recherché
137Cs < 0,5 < 0,5 < 0,5 0,35 ± 0,19 0,77 ± 0,31 0,45 ± 0,24

Ancien lien

Ces déchets nucléaires dont on ne sait que faire

Contribution de l’ACRO au débat public sur les déchets nucléaires à vie longue et de haute activité, septembre 2005
Télécharger le document officiel
Contribution de l’ACRO au débat sur l’EPR
Débat sur l’EPR : le secret est inacceptable, communiqués de presse du 17 octobre 2005


Aucun pays, à ce jour, n’a trouvé de solution pour le devenir des déchets nucléaires qui, pour certains d’entre eux, demeureront toxiques pendant des millions d’années, et dont la gestion pose d’énormes problèmes à l’industrie nucléaire. L’enjeu est double : épurer le passif – des déchets sont parfois entreposés dans de mauvaises conditions et portent atteinte à l’environnement – et proposer des filières d’évacuation dès la source pour tous les déchets à venir, en y associant une traçabilité la plus exhaustive possible.

De la mine à la centrale électrique ou l’usine de retraitement, chaque étape de la chaîne du combustible fournit son lot de déchets, généralement classés selon leur radioactivité et leur durée de vie. Seuls ceux faiblement radioactifs et de période courte (inférieure à trente ans) ont trouvé un site d’accueil définitif : ils sont stockés en surface, dans l’Aube, à Soulaines-Dhuys. Ce centre a pris le relais de celui de la Manche, qui a reçu son dernier colis en 1994 et ne satisfait pas aux règles de sûreté des stockages actuels. Pâtissant d’une gestion passée empirique, il contient des radioéléments à vie longue et des fuites portent atteinte à l’environnement. Le centre de l’Aube, huit fois plus grand pour deux fois plus de déchets, sert de vitrine à l’Agence Nationale des Déchets Radioactifs (ANDRA). Le stockage n’y est prévu que pour trois cents ans.

Cette solution est cependant trop onéreuse et inadaptée pour les 50 millions de tonnes de résidus miniers accumulées pendant les quarante années d’extraction de minerai en France. Si ces résidus sont très faiblement radioactifs, ils ont l’inconvénient de contenir des radioéléments à vie longue : 75 380 ans de période pour le thorium 230. Par ailleurs, l’un des descendants de l’uranium – le radon – est un gaz toxique, ce qui rend le stockage ou l’entreposage difficile. Ces types de déchets sont généralement entreposés dans d’anciennes mines à ciel ouvert ou dans des bassins fermés par une digue, en attendant une meilleure solution qui éviterait les risques de dispersion des radioéléments par érosion ou suintement. Ce problème est maintenant déplacé dans les pays producteurs puisque l’uranium est entièrement importé. Au Gabon, les résidus ont été déversés directement dans le lit de la rivière Ngamaboungou jusqu’en 1975 par la Comuf, filiale de la Cogema.

D’autres déchets très faiblement radioactifs (TFA), issus du démantèlement des installations nucléaires, vont aussi poser un problème d’envergure. Ainsi, en France, il va falloir trouver une solution à moindre coût pour les 15 millions de tonnes attendus. Pour une partie de ce volume, un « recyclage » est prévu et la possibilité d’établir des seuils de libération a été introduite par la législation d’origine européenne permettant alors de les considérer légalement comme des déchets non radioactifs. Pour les déchets dépassant les seuils, le centre de stockage en surface de Morvilliers dans l’Aube vient d’entrer en exploitation.

Un débat limité

Le débat proposé ne concerne que les déchets nucléaires de haute activité et à vie longue. Tous les autres échappent à la loi Bataille et au « débat démocratique » proposé. Il serait temps que la représentation nationale s’inquiète du devenir de tous les déchets après avoir consulté la population. Son incapacité à sortir des limbes le projet de loi sur la « transparence nucléaire » ne permet pas d’être optimiste.

En ce qui concerne les déchets les plus toxiques et à vie longue, dont les volumes sont beaucoup plus faibles, un consensus international semble se dégager en faveur de leur enfouissement, même si l’avancement des recherches dépend beaucoup de considérations politiques locales. L’argument généralement avancé est la protection des générations futures, la barrière géologique devant retenir les éléments toxiques pendant des millions d’années sans intervention humaine. Cette interprétation suppose une certaine défiance envers la capacité de nos successeurs à faire face aux dangers provoqués par les déchets nucléaires. Paradoxalement, les opposants à l’enfouissement brandissent aussi la protection générations futures pour justifier de leur opposition, avec comme soucis de leur laisser la possibilité d’intervenir facilement sur le stockage en cas de problème, et comme hypothèse optimiste qu’elles sauront mieux que nous gérer ces déchets. C’est aussi leur laisser un pouvoir de décision en faveur de la gestion des risques : les centres de stockage souterrains sont conçus pour que l’exposition des générations futures satisfasse aux normes de radioprotection actuelles, normes qui seront fort probablement modifiées dans l’avenir. L’affirmation de l’ANDRA, après seulement quelques mois de recherche, que le site de Bure peut accueillir des déchets pendant des millions d’années est peu crédible scientifiquement.

Le mythe du recyclage

En France, outre le stockage en profondeur, la loi du 30 décembre 1991 relative aux recherches sur la gestion des déchets radioactifs prévoit l’étude de la séparation des éléments radioactifs les plus nocifs à long terme, celle de leur transmutation, ainsi que « l’étude de procédés de conditionnement et d’entreposage de longue durée en surface de ces déchets ».  La séparation et la transmutation proposées par la loi sont parfois présentées comme un recyclage des déchets radioactifs pouvant constituer une solution de rechange au stockage définitif. Elles concernent plutôt les combustibles irradiés issus d’une éventuelle prochaine génération de réacteurs, mais pas les déchets accumulés actuellement. La séparation de certains radioéléments du combustible irradié nécessite des opérations chimiques complexes. Les recherches en cours visent essentiellement à améliorer les capacités de retraitement de l’usine de la Hague. La transmutation, quant à elle, nécessite l’utilisation d’un parc complet de réacteurs nucléaires innovants ; d’autres pays se sont aussi lancés dans ce type de recherches dont certains résultats ne sont pas sans intérêts militaires.

Si ces recherches aboutissaient, un système nucléaire vaste et complexe serait à créer pour remplacer des isotopes peu radioactifs à vie longue par des isotopes très radioactifs à vie courte. Faut-il exposer les travailleurs du nucléaire et les populations du présent siècle à un détriment certain pour protéger les populations futures dans 100.000 à des millions d’années ? Sans compter le risque d’accident beaucoup plus grand sur un site industriel que dans un centre de stockage. L’industrie nucléaire peine déjà à recycler le plutonium et l’uranium extraits des combustibles usés. Le retraitement, technologie d’origine militaire, est aussi une opération très polluante et onéreuse. Un retraitement poussé ne ferait qu’augmenter ces coûts, d’autant plus que la convention internationale OSPAR impose de faire tendre vers zéro les rejets dans l’Atlantique Nord d’ici 2020. L’exposition aux rayonnements ionisants engendrée par cette pratique n’a jamais été justifiée par les avantages économiques, sociaux ou autres par rapport au détriment qu’ils sont susceptibles de provoquer, comme l’impose pourtant la réglementation. Comment alors justifier des opérations plus complexes ? De plus, dans la mesure où il conduit à vitrifier les résidus, le retraitement rend difficile la reprise ultérieure des déchets soit parce qu’une matrice meilleure aura été trouvée, soit pour une séparation plus poussée. Le choix du retraitement, jamais débattu, ferme des options de gestion aux générations futures.

Pour un stockage réversible

Pour les déchets accumulés jusqu’à maintenant, ne restent donc que le stockage souterrain ou un entreposage en surface à plus ou moins long terme. Dans tous les pays, l’industrie nucléaire semble pencher vers une « évacuation géologique », même si l’on en est qu’au stade des études. Le Waste Isolation Pilot Plant (WIPP) dans une formation saline du Nouveau-Mexique aux Etats-Unis fait figure de pionnier avec son premier colis de déchets reçu en mars 1999. Il est destiné aux déchets transuraniens issus de la recherche et production d’armes nucléaires. L’entreposage en surface, quant à lui, semble avoir la préférence des écologistes, pour son caractère réversible. Dans l’hypothèse d’un stockage profond, à la fermeture du site, l’étanchéité du site impose de fermer l’accès définitivement, les éventuels colis défectueux ne pouvant alors être repris qu’à l’issue de travaux miniers lourds. Avant, durant la phase d’exploitation, le centre de stockage souterrain est réputé réversible.

La notion de réversibilité, qui découle du principe de précaution, est récurrente dans le débat sur les déchets. Elle est surtout proclamée comme argument d’acceptabilité mais pas appliquée au retraitement par exemple. Au-delà des slogans, la réversibilité implique de garder plusieurs options ouvertes afin de pouvoir revenir sur certains choix. En effet, la reprise d’un stockage défectueux nécessite d’avoir une solution meilleure. Pour limiter le coût humain et financier lié à la multiplication des options – « l’énergie nucléaire doit rester compétitive ! » – une hiérarchisation s’impose entre les options a priori prometteuses pour lesquelles des développements technologiques lourds sont nécessaires et celles pour lesquelles un effort modéré de Recherche et Développement devrait suffire à maintenir l’option ouverte. Cette démarche impose aussi de garder les déchets sous la main, si jamais une solution meilleure était trouvée. C’est le cas en particulier des combustibles usés qui contiennent des éléments pouvant peut-être intéresser les générations futures. A partir du moment où nos descendants sont supposés avoir les capacités de surveiller en surface une partie des déchets – les plus toxiques –, pourquoi d’autres déchets doivent absolument être enfouis ?

Pour le retour des déchets étrangers

L’hypothèse d’un stockage à l’étranger dans des pays moins regardants séduit les autorités qui doivent faire face à une forte contestation de leurs populations. En France, l’article 3 de la loi de décembre 1991 stipule que « le stockage en France de déchets radioactifs importés, même si leur retraitement a été effectué sur le territoire national, est interdit au-delà des délais techniques imposés par le retraitement ». Mais des déchets étrangers, issus du retraitement, auraient dû être renvoyés dans leur pays d’origine depuis longtemps. Et les contrats allemands, qui prévoient l’hypothèse d’un non-retraitement sans pénalité, transforment de fait l’usine de La Hague en centre d’entreposage international. Malheureusement, on attend toujours les décrets d’application pour que la loi Bataille puisse être respectée… Le retour dans leur pays d’origine des tous les déchets – y compris les déchets technologiques et de démantèlement – est un impératif éthique.

La gestion des déchets radioactifs nécessite des choix collectifs problématiques impliquant une perspective temporelle inhabituelle : comment prendre des décisions pour les générations et sociétés lointaines ? Trop reporter les décisions pourrait être préjudiciable. Les déchets existent et demandent une gestion rigoureuse dès leur production. Mais des considérations à court terme concernant par exemple la poursuite ou non du programme nucléaire viennent interférer et risquent d’emporter les décisions. En effet, pour pouvoir obtenir l’assentiment de la population, il faut absolument pouvoir prétendre avoir une solution pour les déchets. Un compromis prudent pourrait être réalisé à travers une approche séquentielle de la décision, avec des échéances régulières sans que soit fixée a priori une limite temporelle à ce processus afin de garantir la liberté de choix de nos descendants. Surtout, un dialogue continu avec les citoyens est nécessaire pour légitimer ces choix, pas seulement quand les autorités veulent relancer le nucléaire.

ACRO
https://acro.eu.org

Ancien lien