Feuilleton EPR2

Parce que le gouvernement a décidé d’autoriser EdF a construire un deuxième EPR, nous allons reprendre notre feuilleton sur l’EPR. Le premier feuilleton écrit avant la construction de “la tête de série” à Flamanville garde toute sa pertinence.

  1. Exportation Peu Rentable

Exportation Peu Rentable

ACROnique du nucléaire n°84, mars 2009

C’est par un communiqué [1] laconique que l’Elysée a annoncé le lancement d’un deuxième EPR, en France : « L’Etat valide le projet d’EDF de réaliser cette centrale sur le site de Penly, en Seine-Maritime. EDF réalisera cet équipement dans le cadre d’une société de projet dont il aura la majorité. GDF SUEZ sera associé à ce projet. D’autres partenaires désireux de partager l’investissement et l’approvisionnement électrique seront invités à y participer. EDF déposera dans les prochaines semaines un dossier sur ce grand projet à la commission nationale du débat public, en vue de commencer la construction en 2012 et de raccorder la centrale au réseau en 2017. Dans la perspective du développement ultérieur de la filière, l’Etat reconnaît la volonté de GDF SUEZ d’assumer la maîtrise d’ouvrage et l’exploitation de l’EPR suivant. »

Cette décision n’est justifiée ni par une nécessité de diversifier la production électrique puisque le nucléaire fournit déjà 84% de l’électricité d’EdF, ni par une nécessité de favoriser la concurrence par rapport à l’opérateur historique, puisque c’est EdF qui gagne le bras de fer contre GdF-Suez. Le président de la république a justifié sa décision lors de son déplacement à Flamanville le 6 février 2009 où un premier EPR est en construction : faire de la France une exportatrice d’électricité. « Il y a le monde à conquérir en énergie » a-t-il déclaré.

Cette décision apparaît comme un aveu d’échec de la part de celui qui voulait vendre des EPR à toute la planète. Faute de pouvoir vendre des réacteurs, on va les construire en France et exporter l’électricité. Or la France est déjà exportatrice d’électricité, comme cela est exposé en encadré et ce n’est pas sans poser de nombreux problèmes.

Dans un appel [2] d’intérêt public pour une diversification urgente du bouquet électrique français, des employés d’EdF soulignent qu’« avec près de 80% de sa production électrique d’origine nucléaire […] la France est le seul pays au monde à dépendre autant de cette source d’électricité peu modulable et donc inadaptée aux pointes de consommation. L’extrême centralisation inhérente à la technologie nucléaire, outre qu’elle entraîne des pertes d’énergie sur le réseau, constitue une cause supplémentaire de vulnérabilité potentielle de l’approvisionnement électrique, dans un contexte de multiplication des incidents et accidents, notamment liés à l’âge du parc et à certaines erreurs de conception. […]

D’une part, ses 58 réacteurs rendent notre pays notoirement excédentaire en moyens de production continue de courant (répondant aux besoins en base). La nécessité technique que ces installations fonctionnent jour et nuit – hors périodes d’arrêt pour maintenance – encourage chez nous la surconsommation électrique. L’électricité ne pouvant se stocker, cette surproduction entraîne aussi des exportations à bas prix de courant à l’étranger, lesquelles ont, dans nombre de pays, un effet de dumping dissuasif sur le développement des énergies renouvelables, qu’elles soient thermiques (biogaz, biomasse…) ou autres. Par ailleurs, le surcroît de plutonium et de déchets radioactifs correspondant à ces exportations restera bien sûr, quant à lui, stocké sur le sol français.

D’autre part, les unités de production thermiques plus souples (utilisables en périodes de pics de demande électrique sans générer le reste du temps de gaspillages ni d’incitations à la surconsommation) commencent en revanche à faire cruellement défaut – d’où les difficultés croissantes de RTE (le Réseau de transport d’électricité) pour faire face à la demande sans discontinuité. Cela oblige, lors des pointes de consommation ou d’incidents sur le réseau, à de coûteuses importations d’électricité produite à l’étranger, y compris à partir de ressources fossiles particulièrement polluantes comme le lignite ; celles-ci sont en outre souvent brûlées dans des centrales de conception dépassée, à mauvais rendement énergétique et ne répondant pas aux normes environnementales les plus récentes.

Autrement dit, au lieu d’apporter au niveau planétaire des économies nettes d’émissions de gaz carbonique (CO2), notre parc électronucléaire surdimensionné amène en pratique la France à externaliser, vers des états comme l’Allemagne ou la Pologne, des émissions massives de CO2 et d’autres polluants liées à l’exploitation ponctuelle de centrales thermiques anciennes, ce qui retarde d’autant la fermeture des plus vieilles centrales étrangères. […]

Le « Grenelle de l’Environnement » vient à juste titre d’insister sur l’impérieuse et urgente nécessité de lutter contre les dérèglements climatiques, en particulier par le biais des économies d’énergie et de l’efficacité énergétique, dont on sait désormais qu’elles ont joué, dans la baisse des émissions de CO2 françaises au cours des années 70 et 80, un rôle au moins égal à celui de la mise en service du parc électronucléaire en remplacement d’unités thermiques classiques. […]

Dès lors, on ne peut plus se contenter de construire – comme le prévoient EDF et le gouvernement – de nouvelles centrales thermiques classiques (gaz, fioul, bois…) pour assurer les pics de demande, sans réduire aussi notre parc nucléaire surdimensionné qui, notamment par les gaspillages qu’il induit, entrave toute réelle politique d’économies d’énergie, non seulement en France, mais aussi indirectement en Europe, voire ailleurs dans le monde par le mauvais exemple qu’il donne. […]

Pour toutes ces raisons, nous demandons à compter d’aujourd’hui une réduction rapide et volontariste de la part du nucléaire dans le bouquet électrique français. Cette part pourrait par exemple passer, en cinq ans, des actuels 80% à 60% de l’électricité consommée, et ce :
– en fermant les réacteurs atomiques les plus anciens, les plus coûteux en maintenance, les plus générateurs de rejets et effluents radioactifs et chimiques, les plus irradiants, démotivants et anxiogènes pour les personnels qui y travaillent et les populations environnantes, tout en assurant le maintien sur site ou la reconversion des travailleurs ;
– en leur substituant des moyens de production électrique moins centralisés, adaptés aux ressources locales (centrales à gaz en cogénération, susceptibles de fonctionner à terme avec du biogaz de méthanisation, et à coupler avec des réseaux de chaleur ; centrales à bois, ou centrales mixtes charbon/biomasse ; photovoltaïque ; éolien ; etc.). Par ailleurs, tout en respectant les normes environnementales et énergétiques les plus modernes, ces moyens de production peuvent, contrairement aux réacteurs nucléaires, répondre aux fluctuations de la demande et être mis à l’arrêt chaque fois que les nécessaires efforts d’économies d’énergie effectués par les industriels, les collectivités et les particuliers le justifieront. »

[1] Publié le 30-01-09
[2] http://www.alecoso.fr/spip.php?article64

2000 à 2007, bilans électriques français

Notes de lecture des bilans annuels publiés par le Gestionnaire du Réseau de transport d’électricité (RTE)

André Guillemette, juillet 2008

Nucléaire et indépendance énergétique, part de l’électricité nucléaire dans la consommation d’énergie en France

Source : Mémento sur l’énergie, Energy data book, CEA, Ed. 2006

Source : Mémento sur l’énergie, Energy data book, CEA, Ed. 2006

Selon la publication du CEA (CEA, 2006), la consommation totale d’énergie en France en 2005 a été de 276,5 Mtep (millions de tonnes équivalent pétrole), dont 117,5 Mtep en électricité. Sur ces 117,5 Mtep, 78,3 % sont d’origine nucléaire (CEA, 2006). La part de l’électricité nucléaire produite est donc de 33,27 % de l’énergie consommée.

Lors du débat sur l’énergie organisé par le gouvernement français en 2003, l’association Global Chance partant des mêmes consommations de l’année 2000 que “CEA 2001”, mais prenant en compte toutes les données comptables (rendements, pertes en ligne, consommation d’auxiliaires, …), évaluait la part de l’énergie nucléaire consommée à 17%, alors que les données officielles situaient cette contribution à 28% pour cette même année 2000.
feuilleton_EPR2_image2

La production d’énergie nucléaire et l’exportation d’électricité

Electricité d’origine nucléaire et exportations d’électricité

Electricité d’origine nucléaire et exportations d’électricité
Sources : EDF et RTE

En 2007, les 58 réacteurs français ont produit 428,7 TWh (TWh = 1000 milliards de Watt par heure). 56,7 TWh soldent le bilan positif des échanges d’électricité avec les pays limitrophes Italie, Suisse, Grande-Bretagne, Espagne, Allemagne. En 2007, comme les dix années précédentes l’exportation était de l’ordre de 83 TWh.
Nous avons exporté en 2007 une quantité d’électricité équivalente à la production de 8 (solde positif des échanges) à 11,5 (production en base, contractuellement exportée) réacteurs.
Ce solde positif des échanges d’électricité apparaît dès 1982, progresse rapidement jusqu’en 1990 pour rester relativement constant jusqu’à aujourd’hui, comme on peut le voir sur le graphe ci-contre.
Bilan détaillé des échanges

L’historique du solde des échanges d’électricité est présenté ci-dessous en nombre de réacteurs dédiés à l’exportation.

Sources : EDF et RTE

Sources : EDF et RTE

Dès 1984 apparaît une surcapacité équivalente à la production de 4 réacteurs. En part de la production d’origine nucléaire, l’électricité exportée varie de 10 à 20 % de cette production. Depuis 1991 le palier d’exportation varie entre l’équivalent production de 8 à 11 réacteurs.

Solde des échanges par pays
(un réacteur produit en moyenne 7,2 TWh/an)

Sources : RTE

Sources : RTE

Depuis 2004, la tendance  est à l’exportation de la production d’environ 3 réacteurs vers la Suisse, 3 réacteurs vers l’Italie, 2 réacteurs vers la Belgique, et un réacteur vers la Grande Bretagne et l’Espagne. Par contre, nous importons l’équivalent de la production d’un réacteur de l’Allemagne, pays connu pour son fort développement des énergies renouvelables … et l’engagement pour l’arrêt de son programme électronucléaire.

Commentaires

Depuis 1990, nous avons  une surcapacité  moyenne de 10 réacteurs nucléaires,  et environ 48 dédiés à l’utilisation hexagonale. De plus, 3 réacteurs sur les 4 du site de Tricastin servent uniquement à l’enrichissement du combustible, dont une grande partie est exportée : Tricastin fabrique plus du tiers de la production mondiale, l’équivalent du chargement de 100 réacteurs, soit encore presque 1,5 réacteurs dédiés à l’exportation. AREVA construit actuellement sur le site de Tricastin une nouvelle usine d’enrichissement par centrifugation (GB2) nettement moins gourmande en électricité que le procédé actuel par diffusion gazeuse : 75 MW contre 3000 MW. La nouvelle usine sera opérationnelle en 2009 (ASN, 2007)… et la production de 3 réacteurs de 900 MWe sera disponible sur le réseau en 2009, 2 ans avant la mise en service prévue (2011) de l’EPR en construction à Flamanville.
Il est aussi notable qu’un réacteur sert en permanence à pomper de l’eau (env. 7 TWh/an) pour la monter dans des réserves d’eau dont l’énergie est restituée en conduite forcée, en fonction des besoins. C’est indispensable pour pouvoir adapter l’offre à la demande.

En conclusion, 12 réacteurs sur 58, soit 20,7 % du parc nucléaire français, sont utilisés à d’autres fins que les seuls besoins énergétiques des Français depuis le début des années 1990. Cela devrait augmenter dans les années à venir de 2009 à 2011 la production de 4 réacteurs (3 x 900 MWe à Tricastin, 1 x 1600 MWe à Flamanville) va être disponible sur le réseau électrique français sans que la consommation ait progressé notablement : elle a régressé entre 2006 et 2007 (RTE, 2006 et 2007). Que faire de ces 4300 MWe disponibles en base, sinon signer là encore des contrats d’exportation pour assurer un débouché fiable à notre production nucléaire ?

Sachant que les 58 réacteurs actuels ont une durée minimale d’activité prévue de 40 ans (60 ans – espérés – pour les mêmes réacteurs nucléaires aux Etats-Unis), soit un premier besoin de remplacement en 2017  au plus tôt, nous ne percevons toujours pas encore pourquoi il a fallu démarrer de toute urgence la construction d’un réacteur EPR à Flamanville, dont la production viendra s’ajouter en 2011 à notre surcapacité chronique. Rappelons que Flamanville et Penly font partie des sites les plus éloignés des frontières suisses et italiennes, limites de résidence des principaux clients d’EDF.

Bibliographie

ASN, 2007. Rapport annuel : La sûreté et la radioprotection en France en 2007
CEA, 2006. Mémento sur l’énergie. CEA, édition 2006.
Global Chance, 2003. Les cahiers de Global Chance. Petit mémento énergétique. Eléments pour un débat sur l’énergie en France. Janvier 2003.
RTE, 2000 à 2007. Résultats techniques du secteur électrique en France. RTE, Gestionnaire du Réseau de Transport d’Electricité. Années 2000 à 2007.

Ancien lien

Un exercice d’expertise pluraliste autour des mines d’Uranium du Limousin

Pierre BARBEY, Représentant de l’ACRO au sein du GEP-Mines, ACROnique du nucléaire n°84, mars 2009


En juin 2006 est annoncée la création d’un « Groupe d’Expertise pluraliste autour des mines du Limousin » (GEP-Mines) qui tiendra sa première réunion les 29 et 30 juin 2006 à Bessines sur Gartempes.

La lettre de mission initiale (9 novembre 2005) adressée par le Ministère en charge de l’Ecologie et l’ASN indique que le « GEP aura pour mission d’apporter un regard critique sur les documents techniques relatifs à la surveillance des sites miniers de COGEMA, afin d’éclairer l’administration et l’exploitant sur les options de gestion et de surveillance des installations ». Le second point de la lettre de mission précise que « par ailleurs, le GEP s’attachera à formuler des recommandations visant à réduire les impacts des sites miniers sur les populations et l’environnement et à proposer des perspectives de gestion des sites à plus ou moins long terme, notamment par comparaison avec des industries de même nature ou des expériences étrangères ». Enfin, le GEP « participera à l’information des acteurs locaux et du public ».

Encadré n°1

Les associations impliquées dans le GEP-Mines :
• le GSIEN
• l’ACRO
• Sources et Rivières du Limousin
• Sauvegarde de la Gartempe

A noter également la participation d’Yves Marignac de WISE-Paris.

La CRII-RAD sollicitée dès l’origine par Annie Sugier a décliné l’invitation.

Les premiers mois de l’année 2006 ont été consacrés à l’exercice délicat (pour sa Présidente, Annie Sugier) de constitution du Groupe. Il associe principalement des experts institutionnels de l’ Institut de Radioprotection et de Sureté Nucléaire  mais aussi de l’InVS (Institut de Veille Sanitaire), de l’exploitant AREVA, des experts étrangers, de nombreux chercheurs et universitaires ainsi que des experts associatifs [voir encadré n°1]. Des représentants de l’administration  (Direction Régionale de l’Industrie de la Recherche et de l’Environnement du Limousin, Autorité de Sureté Nucléaire et  Ministère de l’Écologie, de l’Énergie, du Développement Durable et de l’Aménagement du Territoire) assistent également aux réunions du GEP.

Le GEP a déjà produit trois rapports d’étapes et il poursuit actuellement ses travaux qu’il doit clore au 31 décembre 2009. Son rapport final est donc attendu pour janvier 2010.

Qu’est-ce qu’un GEP ?

Un GEP (Groupe d’expertise pluraliste) est un lieu de dialogue technique permettant à des experts scientifiques d’origine variée (institutionnels, industriels, associatifs, français et étrangers) d’émettre des avis à l’intention des pouvoirs publics, de collectivités locales ou territoriales ou encore de toute structure de concertation concernée. S’inspirant largement de l’expérience du GRNC (Groupe Radio-écologie du Nord-cotentin), au sein duquel l’ACRO s’est fortement impliquée, cette démarche de concertation a été principalement théorisée par Annie Sugier vers la fin 2004. Une note technique sur les modalités de mise en œuvre d’un GEP est disponible auprès de l’IRSN (département Ouverture à la Société).

Sa mise en place peut être sollicitée en particulier dans des contextes de polémiques ou de fort questionnement de populations face à une situation de risque industriel. Cette démarche peut aussi être intégrée à un processus de décision réglementaire (c’est le cas du GEP-Mines). Elle nécessite une lettre de mission des pouvoirs publics qui précisent le champ de la mission et apportent les moyens nécessaires à son exercice.

Le GEP travaille en toute transparence et, en général, il s’attache à intervenir régulièrement devant la structure de concertation locale (CLI ou autre). Il cherche à réaliser une analyse la plus exhaustive possible du dossier traité. Le consensus n’est pas recherché systématiquement et le rapport collectif qu’il produit doit expliciter les divergences de vue éventuelles. Ses avis et ses rapports destinés à l’entité qui délivre la saisine sont obligatoirement rendus publics.

Rappel sur l’histoire des mines d’Uranium en France

L’uranium est un métal présent naturellement dans l’écorce terrestre où il peut se rencontrer aussi bien dans des terrains granitiques que sédimentaires. La teneur moyenne en uranium des roches est de l’ordre de 3 g / tonne (3 ppm). Certaines régions présentent cependant des teneurs sensiblement plus élevées que la moyenne. C’est le cas notamment de certains massifs granitiques avec des teneurs de l’ordre de 10 à 20 g / tonne (10 à 20 ppm).GEP_mines1
En France, dès la création du CEA (Commissariat à l’Energie Atomique) en 1945, des équipes de prospection ont été montées pour trouver rapidement de l’uranium. La prospection de l’uranium s’opère sur la base des propriétés radioactives du minerai recherché (recherche à l’aide de radiamètres), en plus des techniques classiques de recherche minière.

A la fin des années 1940 – au début des années 1950, sont découverts les gisements d’Henriette, dans les massifs granitiques du Limousin (Massif Central), et ceux des Bois Noirs, dans les Monts du Forez.

A la fin des années 60, les principaux districts uranifères français sont découverts et les Divisions Minières, chargées de l’exploitation des gisements dans une même région (environ 1 000 km2), sont créées : Division Minière de la Crouzille dans le Limousin, de Vendée dans l’Ouest, du Forez, de l’Hérault.

Au sein de ce vaste ensemble, l’extraction du minerai d’uranium s’est effectuée sur des sites de taille variée, très proches ou relativement éloignés les uns des autres, tantôt par travaux miniers souterrains (TMS), tantôt par mine à ciel ouvert (MCO) selon la profondeur du gisement. Les minerais extraits des mines étaient envoyés sur une usine de traitement, généralement construite à proximité des sites d’extraction, pour transformation en un concentré d’uranium marchand, le “yellow cake”.

En France, près de 200 sites miniers et huit usines ont été exploités conduisant à une production totale de 76 000 tonnes d’uranium.

Les gisements français étaient assez petits et pauvres comparés aux gisements situés au Niger, Gabon, Australie et Canada. La fermeture généralisée des mines a été entamée à la fin des années 80. La dernière exploitation, à Jouac (Haute-Vienne), a cessé toute activité en 2001.
GEP_mines2Une prise en compte bien tardive des risques liés aux mines d’uranium

Cette phase de prospection intensive puis d’exploitation constitue une période euphorique qui peut faire penser à la ruée vers l’or. Dans ce contexte, les dégâts environnementaux engendrés et les risques sanitaires potentiels ne seront pas, et de loin, une des premières préoccupations des exploitants. Des stériles de mines, radioactifs, seront disséminés en de nombreux endroits, engendrant, de nos jours encore, des risques d’irradiations supplémentaires.

Même si le code minier a été appliqué, il faudra, en fait, attendre près d’un demi-siècle après le début de la prospection pour que ces préoccupations commencent à trouver un encadrement réglementaire. Les dispositions prises pour limiter les transferts de radionucléides vers la population sont entrées en application après l’adoption du décret n°90-222 du 9 mars 1990 qui a introduit une partie “protection de l’environnement” au Règlement général des industries extractives (RGIE). Quant à la présomption de responsabilité de l’exploitant, celle-ci a été affirmée en 1994.

La réglementation en matière d’impact radiologique et de surveillance de l’environnement (décret  du 9 mars 1990) a introduit le principe de « l’exposition ajoutée » qui correspond à la différence entre l’exposition due au site et l’exposition naturelle (sur le site et dans son voisinage avant le début des travaux).

La mise en place d’un dispositif de surveillance est généralement imposée à l’exploitant par arrêté préfectoral lors de la cessation d’activité.

Que ce soit pendant la période d’exploitation d’un site ou après son arrêt définitif, l’exploitant doit respecter des limites annuelles d’exposition ou d’incorporation définies à cette époque.

Encadré n° 2

Limites annuelles des expositions ajoutées fixées par le décret du 9 mars 1990 :

  • 5 mSv pour l’exposition externe ;
  • 170 Bq pour les émetteurs alpha à vie longue de la chaîne de l’uranium 238 présents dans les poussières en suspension dans l’air et inhalés,
  • 2 mJ d’énergie alpha potentielle pour les descendants à vie courte de radon 222 inhalé ;
  • 3000 Bq pour les émetteurs alpha à vie longue dans les poussières d’uranate, la quantité journalière de ces poussières inhalées n’excédant pas 2,5 mg ;
  • 7000 Bq pour le radium 226 ingéré ;
  • 2 g pour l’uranium ingéré, la quantité journalière des composés hexavalents pouvant être ingérée n’excédant pas 150 mg.

Le taux annuel d’exposition totale ajoutée (TAETA) est obtenu en faisant la somme des valeurs des composantes de l’exposition ajoutée (valeur d’exposition mesurée à la fermeture du site moins la valeur mesurée avant la mise en exploitation), rapportées à leurs limites annuelles respectives.

Le calcul du taux d’exposition considéré s’applique aux personnes du public les plus exposées et en se référant à la limite annuelle d’exposition de 5 mSv en vigueur à cette époque.

En octobre 2000 puis en janvier 2002, le ministère en charge de l’Environnement (DPPR) a demandé à COGEMA de vérifier le respect de la nouvelle limite de dose individuelle ajoutée de 1 mSv/an sur chacun de ses sites. Ceci en prévision de l’application du décret n° 2002-460 du 4 avril 2002 transposant en droit français une partie de la directive européenne n° 96/29/Euratom laquelle abaisse la limite annuelle d’exposition pour le public de 5 mSv/an à 1 mSv/an.

La gestion de l’après-mine

Si, comme nous l’avons indiqué précédemment, il n’y a plus en France (depuis 2001) d’exploitation de mines d’uranium, il n’en demeure pas moins une situation d’héritage qui devra être à gérer sur le long terme. Et les affaires médiatisées de Saint-Priest-La-Prugne et du lac de Saint-Pardoux sont là pour nous rappeler qu’il s’agit d’un héritage source de pollutions radioactives de l’environnement.

Tout comme pour la problématique des déchets radioactifs, notre société va laisser là encore un terrible cadeau empoisonné aux générations futures.

La gestion de l’après-mine concerne des volumes très importants de matériaux qui s’expliquent par les modes d’extraction de l’Uranium. Pour accéder aux minéralisations (filons), il fallait soit décaper la partie de roche stérile qui les recouvre (cas des mines à ciel ouvert), soit creuser des galeries dans cette même roche stérile si les minéralisations visées étaient en profondeur (cas des mines souterraines). Les roches situées à proximité d’un gisement, considérées comme stériles sur des critères économiques par l’exploitant minier, peuvent avoir une teneur moyenne plus élevée que des roches équivalentes dans un secteur dépourvu de gisement.

GEP_mines3
La distinction entre le minerai et les stériles se faisait sur la base de contrôles à l’aide de radiamètres [2]. Un second contrôle était effectué sur les camions pour trier les minerais selon leurs teneurs. Ce tri reste grossier et des blocs nettement radioactifs peuvent demeurer dans les stériles.

Les stériles sont soit stockés en tas, appelés verses, sur le terrain naturel à proximité des  lieux d’extraction, soit utilisés en remblais d’anciens travaux miniers. Ils ont en particulier été utilisés pour remplir et boucher les anciennes mines souterraines ou en dernière couche de fermeture de mines à ciel ouvert (juste en-dessous de la couche végétale). Cependant, la pratique de cession de ces matériaux (utilisés comme remblai ou de terrassement) à des entrepreneurs ou à des particuliers constitue une source d’exposition potentielle diffuse du public qui ne sera tracée (registre de cession) qu’à partir de 1984 et encadrée réglementairement depuis 1990.
Quant au minerai extrait, il est transporté dans des installations de traitement. Deux catégories de minerai ont été distinguées :
–    Les minerais à faible teneur [de l’ordre de 0,03 à 0,06% (300 à 600 ppm)] sont traités par lixiviation statique. Les minerais disposés en tas sur des aires étanches, sont arrosés avec une solution acide. Les solutions uranifères recueillies sont dirigées vers une usine de traitement.
–    Les minerais à forte teneur moyenne [0,1 à 1% dans les mines françaises] sont traités par lixiviation dynamique dans des installations industrielles spécifiques. Après une préparation mécanique (concassage et broyage), ils sont soumis à une attaque chimique acide ou basique afin de mettre l’uranium en phase soluble. Les solutions liquides contenant l’uranium sont séparées de la phase solide qui constitue les résidus de traitement. Les solutions contenant l’uranium sont envoyées dans des ateliers d’extraction et de purification. A la fin, l’uranium est mis sous forme solide (le yellow cake avec une concentration de 750 kg / tonne).

Ces résidus de traitement sont stockés soit dans des mines à ciel ouvert soit dans des bassins fermés par une digue [cf. figure]. Ils sont répartis sur 17 sites de stockage placés sous le régime administratif d’installations classées (ICPE).

Le bilan de 50 ans d’exploitation est donc conséquent. Les minerais des mines françaises contenaient entre 600 grammes et quelques kilos d’uranium par tonne. Aussi pour produire 76 000 tonnes d’uranium, quelque 52 millions de tonnes de minerai ont été extraites. Pour produire chaque tonne de minerai, on a manipulé en moyenne 9 tonnes de stériles dans les exploitations à ciel ouvert et 0,65 tonne dans les exploitations souterraines, soit au total 166 millions de tonnes.
La question de la tenue à long terme de ces stockages et leur devenir reste une préoccupation majeure et constitue une source d’inquiétude pour les populations avoisinantes.
A la demande de l’administration, l’IRSN a produit un rapport relatif à la doctrine en matière de réaménagement des stockages de résidus de traitement de minerais d’uranium. Ce rapport de doctrine a été transmis aux préfets des départements concernés par circulaire DPPR du 7 mai 1999. En novembre 2001, la DPPR a demandé à COGEMA de procéder à la vérification de la stabilité des digues. La plupart des stockages de résidus ont dû faire l’objet de travaux de réaménagement.

Les travaux du GEP-Mines

A la demande de l’administration [3], AREVA a produit (fin décembre 2004) un bilan décennal de l’environnement (BDE) de ses sites miniers de Haute-Vienne portant sur les années 1994-2003. En janvier 2006, AREVA a demandé à l’IRSN de réaliser une expertise (appelée tierce-expertise) de ce BDE.

La lettre de mission initiale du GEP-Mines (exposée en préambule) précisait en outre que « le GEP assurera le suivi régulier du déroulement de la tierce-expertise et participera à son pilotage ».
A l’heure où nous écrivons ces lignes, l’IRSN vient de remettre à l’exploitant la 3ème partie de cette tierce-expertise (consacrée à la question de la réutilisation des stériles dans le domaine public). C’est donc dire que le GEP-Mines a encore bien du travail devant lui.

Ce d’autant plus que la vie du GEP n’est pas un long fleuve tranquille. Après avoir rendu un premier rapport d’étape (janvier 2007), il est apparu au terme d’une année de fonctionnement que les conditions pour remplir pleinement la mission qui lui avait été confiée n’étaient pas réunies. Les difficultés (qui portaient principalement sur le financement de ce type de structure pluraliste  mais aussi sur l’absence d’une CLIS couvrant le périmètre de l’étude avec laquelle le GEP est censé dialoguer) ont conduit la Présidente du GEP, Annie Sugier, à présenter sa démission en avril 2007. Les membres du GEP, partageant l’analyse de leur Présidente et soutenant ses demandes, ont néanmoins poursuivi leur travail en attendant la nomination d’un nouveau président.

Une lettre du 12 octobre 2007 confie cette présidence au Professeur Robert Guillaumont. Elle prolonge pour deux années la mission du GEP en la précisant, et en lui demandant de proposer une méthode permettant d’appliquer ses recommandations à d’autres sites miniers. Parallèlement, un arrêté préfectoral du 21 décembre 2007 instaure, par extension de la CLIS de Bellezane, une CLIS chargée du suivi des anciens sites uranifères du département de la Haute-Vienne.

Par souci d’efficacité, le GEP-Mines (constitué en Groupe plénier) a décidé très vite de s’appuyer sur le travail de groupes thématiques qui ont la possibilité d’associer de nouveaux experts apportant de nouvelles compétences.
GEP_mines4

Il n’est pas du ressort, dans ce premier article, d’entrer dans le détail des recommandations du GEP, ce qui serait pour le moins prématuré. Soulignons néanmoins quelques points :
Le GT4 a été créé plus tardivement et il vient surtout en appui des autres Groupes de Travail qui lui formulent des questions techniques relatives aux mesures dans l’environnement.
Le GT3 doit s’approprier un volet réglementaire dense et des textes de doctrines qui le conduisent à procéder à de nombreuses auditions de juristes mais aussi d’acteurs très divers car la question du long terme pose avant tout des questions d’ordre sociétal. Les réflexions du groupe portent notamment sur la qualification juridique (sites, matières…), la responsabilité et  la mémoire des sites, le financement sur le long terme et les scénarios à prendre en compte, le contrôle et la surveillance.
Le GT2 tente de mener de front trois volets complémentaires :
–    il développe actuellement une méthode originale d’évaluation de l’impact environnemental lié aux rejets de substances radioactives et chimiques engendrés par les activités des sites miniers ;
–    après s’être attaché à faire l’analyse de la méthode actuelle de caractérisation de l’impact dosimétrique des sites miniers d’uranium, le GT2 développe une méthode générique alternative pour évaluer cet impact dosimétrique. Elle sera ensuite appliquée au cas des sites réaménagés du Limousin puis le groupe étudiera les évolutions à apporter à cette méthode pour une évaluation d’impact dosimétrique à long terme ;
–    la surveillance sanitaire est aussi une préoccupation du GT2 qui a auditionné les animateurs du registre des cancers du Limousin et travaille maintenant avec des universitaires de Grenoble pour définir des indicateurs de veille sanitaire adaptés.
Parce que ses missions sont en phase avec l’objet même de la tierce-expertise, le GT1 est plus avancé dans ses travaux et il a déjà fourni diverses recommandations adoptées par le GEP-Mines.GEP_mines5

Le Groupe s’est d’abord intéressé au site de stockage de Bellezane constitué de deux anciennes mines à ciel ouvert (MCO) où ont été déposés les résidus de traitement (1,5 millions de tonnes représentant une activité de 48 TBq de radium-226).
Il s’est en particulier attaché à étudier le fonctionnement hydraulique du site, l’efficacité du système de surveillance et l’efficacité de la couverture de stockage des résidus concernant l’exhalation du radon et l’exposition externe.
Le GT1 a notamment recommandé de mettre en place un dispositif de piézomètres  pour investiguer les résidus dans les parties profondes et superficielles du stockage et d’élargir le plan de surveillance en intégrant les anciens forages.

Pour améliorer le plan de surveillance, le GEP demande également la réalisation d’une étude hydrogéochimique qui pourra contribuer à une modélisation hydraulique et hydrochimique validée. Celle-ci a été confiée à l’Ecole des Mines de Paris.

Schéma de circulation des eaux et du dispositif de surveillance sur le site de Bellezane.
1 : prélèvement des eaux souterraines du massif granitique,
2 : exhaure du réservoir minier,
3 : prélèvement des eaux de résidus miniers,
4 : prélèvement des eaux de verses à stériles,
5 : prélèvement des eaux du réservoir minier

Pour améliorer le plan de surveillance, le GEP demande également la réalisation d’une étude hydrogéochimique qui pourra contribuer à une modélisation hydraulique et hydrochimique validée. Celle-ci a été confiée à l’Ecole des Mines de Paris.
Le GT1 s’est ensuite intéressé au bassin versant du Ritord qui a été concerné par d’importants travaux miniers sous forme de MCO et/ou de TMS. Ici, les recommandations du GEP ont plus porté sur une caractérisation des formes chimiques de l’uranium et sur une amélioration du mode de traitement des effluents qui puissent favoriser la formation d’uranium particulaire (plus propice à la décantation). D’autres recherches (absorption sur des écorces d’arbre) semblent encourageantes.
Sans préjuger d’un choix technique à l’heure actuelle, le GEP-Mines considère que la réduction des impacts en aval des rejets miniers doit impérativement passer par la mise en place de traitements spécifiques à l’uranium au niveau des rejets. Mais l’objectif est également de minimiser au maximum les impacts environnementaux liés au traitement. Cela implique de s’orienter vers des techniques dites « passives » dans le sens où elles limitent l’utilisation de réactifs chimiques.
Nous aurons l’occasion de revenir plus en détail sur les recommandations du GEP-Mines après la publication de son rapport définitif en 2010. Signalons cependant que le GEP-Mines, dans le cadre de sa mission d’information du public, a mis en place un site internet [http://www.gep-nucleaire.org/gep] où le lecteur intéressé pourra trouver tous les documents actuellement validés par le Groupe.

Ancien lien

Rapport d’étude sur l’origine des éléments de la famille de l’uranium-235 dans les environs de la centrale de Brennilis (29)

Rapport d’étude sur l’origine des éléments de la famille de l’uranium-235 dans les environs de la centrale de Brennilis (29)

Ouverture du site Internet du Réseau National de Mesure de la radioactivité dans l’environnement

Déclaration commune de l’ACRO et du GSIEN

Version Pdf

Communiqué de presse du 4 février 2010

Le GSIEN (Groupement de Scientifiques pour l’Information sur l’Energie Nucléaire) et l’ACRO (Association pour le Contrôle de la Radioactivité dans l’Ouest), en tant qu’organisations membres du comité de pilotage du RNM (Réseau National de Mesure de la radioactivité dans l’Environnement) ont suivi le développement de celui-ci dès sa phase de conception.
Nous nous réjouissons, aujourd’hui, de voir aboutir ces travaux engagés depuis plus de 4 ans et félicitons les équipes de l’ASN et de l’IRSN (et de l’ensemble des intervenants industriels) pour le professionnalisme dont elles ont fait preuve et pour la qualité des relations de travail qui ont marqué ces années de travail commun.
Cet outil, va dans le sens de la charte de l’environnement et de la convention d’Aarhus et, nous l’espérons, sera utile à l’ensemble des acteurs (industriels, autorités publiques, élus, associations et population) concernés par un meilleur contrôle des activités nucléaires.
Mais, si nous avons accepté de participer aux travaux du RNM, cela n’enlève rien aux réserves et critiques que nous avons été conduits ou serions amenés à faire sur cette activité industrielle, son développement, sa gestion et sur les conditions générales de contrôle dont elle fait l’objet.
Nous pensons en particulier, pour ne citer que deux exemples, aux décrets qui restreignent l’accès à l’information pour « cause de secret défense » empêchant un réel contrôle démocratique pluraliste, et au décret et arrêté du 5 mai 2009 relatif aux conditions pour l’addition de radionucléides dans des biens de consommations grand public (arrêté dont la portée est mal explicitée face à un avis défavorable de l’ASN sur le dit arrêté).
Pour le moment, les données transmises par les exploitants des sites sur lesquels s’exercent des activités nucléaires, sont limitées aux seules mesures réglementaires qui sont destinées à vérifier la conformité de l’installation avec ses autorisations de rejets. Ceci est compréhensible pour le démarrage, mais à court terme, ce réseau devrait avoir pour vocation d’être plus exhaustif, pour permettre des analyses d’impact plus détaillées et utilisables pour le suivi sanitaire réclamé par les populations. Les associations (ACRO et GSIEN) sont très attachées à cette extension et la jugent indispensable à un meilleur contrôle de l’état de l’environnement (faune, flore, eau, air, sédiment, …) et donc de l’impact sanitaire des rejets liquide et gazeux.
Ce faisant, le GSIEN et l’ACRO restent disponibles pour poursuivre les travaux d’amélioration au sein du RNM.

Monique SENE, Docteur en Sciences Physiques, Présidente du GSIEN
Marc DENIS, Docteur en Sciences Physiques, GSIEN
Mylène JOSSET, Chargée d’études, ACRO

L’Association pour le Contrôle de la Radioactivité dans l’Ouest (ACRO) est une association loi 1901, agréée de protection de l’environnement et dotée d’un laboratoire d’analyses de la radioactivité. Elle fut créée en 1986 en réponse à une demande d’informations et de mesures fiables et indépendantes. L’émergence d’une telle organisation est liée à la volonté de la société civile de rendre le citoyen auteur et acteur de la surveillance de son environnement comme de son information.

Le Groupement de Scientifiques pour l’Information sur l’Energie Nucléaire (GSIEN) est une association loi 1901. Il s’est donné pour but de délivrer une information sur le nucléaire (installations nucléaires et leurs rejets, déchets, mines, activités militaires, ..) aussi complète que possible. Pour ce faire le GSIEN publie des documents officiels et l’analyse de ces documents. Le GSIEN réalise des expertises pour le compte des Commissions Locales d’Information. Il participe à diverses instances officielles pour y porter le questionnement des citoyens.

Tant qu’il restera des abeilles…

Editorial de l’ACROnique du nucléaire n°83, décembre 2008


« Quand l’explosion a eu lieu, les abeilles ont interrompu leur vol, bien que le temps était beau et ensoleillé. Ne sachant pas encore ce qui s’était passé à Tchernobyl, nous nous demandions pourquoi les abeilles se cachaient dans leur ruche. Elles entouraient leur reine de près, battant constamment des ailes pour minimiser la pénétration de la contamination [1] ».

Depuis, la population d’abeilles n’a cessé de diminuer et la situation est devenue alarmante. Véritables sentinelles de l’environnement, les abeilles sont utilisées comme bio indicateurs de diverses pollutions. La coupe semble pleine, même si les causes de cette hécatombe ne sont pas connues. Les pesticides, les ondes électromagnétiques liées aux téléphones mobiles ou un virus ont été incriminés, avec, peut-être, une combinaison de divers facteurs. Aucune explication ne fait consensus.

La disparition des abeilles et des autres pollinisateurs est une menace majeure pour l’humanité. Aux Etats-Unis, cela a déjà entraîné une diminution de la production agricole. En Chine, des arbres fruitiers sont pollinisés à la main… Parce qu’elle nous touche directement, cette longue agonie des abeilles n’est que la partie immergée de l’iceberg et témoigne d’une grave perte de la biodiversité.

Les préleveurs volontaires de l’ACRO, sentinelles de la radioactivité, ne peuvent plus butiner librement non plus. Alors qu’ils allaient profiter allègrement des grandes marées, c’est la marée chaussée qui les attendait sur la plage pour vérifier leurs papiers. En cette époque de fichage systématique, ce genre de rencontre est des plus désagréables. Bien qu’il y ait déjà le fichier CRISTINA pour prévenir le terrorisme, les fichiers STIC et JUDEX pour les délits, le fichier FNAEG pour les empreintes génétiques, le fichier ELOI pour les étrangers en situation irrégulière, qui contiennent déjà des millions de noms et de nombreuses erreurs, le fichier EDVIGE recensera, de manière systématique et généralisée, toute personne « ayant sollicité, exercé ou exerçant un mandat politique, syndical ou économique ou qui joue un rôle institutionnel, économique, social ou religieux significatif ». Sans exception, toutes les personnes engagées dans la vie de la cité sont donc visées et c’est intolérable [2].

Le travail patient et obstiné de l’ACRO a déjà conduit à une réduction des rejets radioactifs dans le Nord-Cotentin. La disparition des préleveurs volontaires ne serait pas simplement le signe d’une érosion de la citoyenneté et de la démocratie. La surveillance citoyenne des installations nucléaires est un impératif de sûreté et de sécurité en cette époque d’explosion des coûts de l’énergie qui conduit les industriels à rogner leurs coûts d’exploitation. Le sociologue Ulrich Beck note que « le plus influent opposant à l’industrie nucléaire est l’industrie nucléaire elle-même » [3], en faisant référence aux nombreux incidents et accidents qui ont entraîné l’arrêt temporaire ou complet d’installations nucléaires. Ce qui s’est passé à Tricastin vient confirmer ce point de vue. Mais aussi, les problèmes technologiques qui freinent ou retardent le démarrage de nouvelles installations. C’est le cas par exemple de l’EPR en France et en Finlande, ou de l’atelier de vitrification de la toute nouvelle usine de retraitement au Japon.

Tant qu’il restera des abeilles, nous continuerons inlassablement notre travail de surveillance citoyenne de l’environnement.

Les jardiniers de l’ACRO

[1] Témoignage d’un apiculteur polonais paru dans The Times du 14 février 1987
[2] Pour signer la pétition contre le fichier EDVIGE : http://nonaedvige.ras.eu.org/
[3] « Le danger nucléaire escamoté », Le Monde 07/08/2008

Ancien lien

n°83, décembre 2008

L'ACROnique du nucléaire

Du rôle de la pectine dans l’élimination du césium dans l’organisme

ACROnique du nucléaire n°67, décembre 2004


Nous présentons ici les analyses faites sur des enfants biélorusses avant et après leur séjour en Normandie à l’invitation de l’association “Solidarité Biélorussie-Tchernobyl”. Les analyses d’urine ont été effectuées par l’ACRO, alors que les analyses anthropogammamétriques ont été faites sur le corps entier à l’Institut Belrad de Minsk.

A trois exceptions près, tous les enfants sont contaminés par du Césium 137 du fait de la contamination de leur environnement par l’accident de Tchernobyl.

Les analyses sur les urines ne sont pas corrélées aux analyses anthropogammamétriques sur le corps entier. La contamination des urines, bien qu’utilisant une méthode de mesure plus précise, fluctue beaucoup d’un cas à l’autre. Cela peut s’expliquer par la différence entre les urines du matin ou celles de la journée par exemple. Mais aussi par la prise de pectine qui peut accélérer l’élimination pendant un laps de temps donné. Les urines ne sembleraient pas, a priori, être un indicateur fiable de l’évolution de la contamination de l’enfant, sauf si on arrivait à corriger l’incertitude par un autre indicateur. Mais cela dépasse nos compétences et pour le moment, les urines ne sont qu’un témoin de la contamination de l’enfant.

Habituellement, lors de leur séjour en Normandie, les enfants biélorusses reçoivent un traitement à la pectine pour accélérer l’élimination du césium. Cette année, faute de fonds suffisants, seule une partie des enfants a pu être traitée. Cela va nous permettre d’étudier l’importance du rôle de la pectine.

En moyenne, les enfants ayant reçu un traitement à la pectine ont vu leur contamination au Césium 137 baisser de 37% contre 15% en moyenne pour les enfants non traités. Il apparaît donc que la pectine accélère bien l’élimination du césium. A noter que pour deux cas, on constate une baisse de 100%, ce qui est peu plausible et est probablement lié au fait que la limite de détection n’était pas atteinte. Si on retire ces deux cas litigieux, on obtient alors une baisse moyenne de 31% pour les enfants traités à la pectine.

Dans la littérature scientifique, c’est la période de décroissance qui est généralement utilisée. Elle correspond au temps nécessaire à une diminution de moitié de la contamination par élimination biologique et décroissance radioactive. Pour les enfants n’ayant pas reçu de pectine, on trouve qu’il faut 119 jours pour que leur contamination moyenne diminue de moitié. Alors que pour les enfants ayant reçu de la pectine, il ne faut plus que 42 jours (52 jours si on enlève les deux cas litigieux avec une décroissance de 100%). La contribution de la pectine se traduit donc par une période d’élimination de 65 jours (ou 92 jours si on enlève les deux cas litigieux). Cette valeur est plus longue que les 20 jours annoncés par le Pr. Nesterenko qui commercialise la pectine [1]. De même, sans pectine, la période est plus longue que les valeurs retenues par la CIPR-56 pour des enfants. La CIPR (Commission Internationale de Protection Radiologique) considère plusieurs périodes en fonction de la partie du corps considérée (plasma, muscle…). Notre résultat s’approche de la plus longue période retenue pour les adultes qui est de 110 jours pour la partie musculaire.

Les anthropogammamétries sont réputées surestimer les résultats pour des valeurs inférieures à 1000 Bq (ou 33 Bq/kg pour un enfant de 30 kg) [2]. Il y a là un biais qui pourrait conduire à un allongement artificiel des périodes déduites des mesures car à la fin du séjour en Normandie de nombreuses valeurs sont sous ce seuil.

Les périodes de décroissance permettent de calculer la contamination des enfants en fonction de scénarios de consommation de produits contaminés. En supposant, par un exemple, simpliste que les enfants incorporent quotidiennement la même quantité de césium notée Q, alors, leur contamination sera égale à Q.T/ln2. Ainsi leur contamination sera d’autant plus faible que la quantité incorporée sera faible ou que la période d’élimination, T, sera faible. D’après nos résultats, cette période est de 2 à 3 fois plus faible avec un traitement à la pectine que sans. La contamination des enfants sera donc aussi 2 à 3 fois plus faible avec ce scénario qui implique une ingestion quotidienne de pectine. Cependant, la pectine n’est distribuée que lors de 3 cures par an pour des raisons médicales (effets secondaires) et de coûts. Dans de telles conditions, son effet sera donc beaucoup plus réduit.

Une politique de prévention est donc une démarche efficace. L’action de l’ACRO en Biélorussie vise plutôt à tenter de diminuer à la source l’ingestion de césium en favorisant la mise en place d’un réseau de mesure directement en lien avec la population. Nous espérons ainsi mettre en place des comportements alimentaires issus de stratégies efficaces de réduction de l’ingestion de césium 137.

En conclusion, ces résultats font apparaître que le césium 137 serait éliminé moins vite que ce qu’a retenu la CIPR dans ses modèles. Nous notons aussi que la pectine accélèrerait effectivement l’élimination du césium, mais moins vite que ce qui est annoncé par ses promoteurs. D’autres stratégies de réduction de la contamination à la source sont donc tout à fait pertinentes. Les deux approches sont complémentaires et contribuent à la diminution de la contamination des enfants.

D’un point de vue politique, la pectine est ignorée par les milieux officiels de la médecine et de la radioprotection sous prétexte que son efficacité n’est pas prouvée. Mais aucune étude n’est menée… De l’autre côté, certaines associations qui font la promotion de la pectine critiquent avec virulence toute autre démarche basée sur la prévention. Dans un tel contexte, nos résultats sont importants, mais malheureusement pas assez robustes pour pouvoir tirer des conclusions définitives. Ils montrent plutôt la nécessité d’études plus poussées sur le sujet.

Références :
[1] V.B. Nesterenko et al, Reducing the 137Cs-load in the organism of « Chernobyl » children with apple-pectin, Swiss Med wkly, 134 (2004) p. 24
[2] M. Schläger et al, Intercalibration and intervalidation of in-vivo monitors used for whole-body measurements within the framework of a German-Belarussian project, IRPA 11 (May 2004), Madrid, paper ID 839 (on CD ROM)

Anthropogammamétrie
réalisée par Belrad
Dosage du Cs137 dans les urines par l’ACRO
numéro pectine 02/06/2004Bq/kg 30/06/2004Bq/kg 07/06/2004Bq/L 27/06/2004Bq/L
1 non 29,16 28,43 <2,8 2,9±1
2 non 31,96 25,81 9,3±4 <2,8
3 oui 65,40 30,13 40,0±6,6 31,3±5,6
4 oui 29,07 24,80 13,8±3,3 8,8±3,5
5 oui 15,40 10,52 8,0±2,7 4,9±2,1
6 oui 26,15 17,12 13,0±2,8 11,0±3,5
7 oui 0,00 0,00 <2,4 /
8 oui 33,52 20,16 <2,4 /
9 oui 33,55 24,05 5,5±2,3 <4,0
10 non 34,13 28,85 10,4±2,9 9,1±3,8
11 non 54,30 31,20 29,6±4,1 14,6±3,5
12 oui 31,10 19,60 15,4±3,3 4,3±2,1
13 oui 46,83 30,57 20,13,2 20,0±4,4
14 non 34,46 20,55 10,5±2,8 3,6±1,8
15 oui 41,00 37,30 18,5±4,7 <4,4
16 oui 38,23 0,00 7,2±2,5 <4,4
17 oui 47,36 32,85 <6,0 /
18 oui 52,69 28,56 40,2±6,9 5,4±1,5
19 oui 38,71 0,00 <3,2 /
20 oui 31,50 20,41 16,3±4,7 <2,8
21 oui 91,52 62,58 64,4±7,9 36,8±6,8
22 oui 23,07 13,21 <3,6 /
23 oui 51,04 40,98 25,1±4,2 17,3±4,7
24 non 0,00 0,00 <2,4 /
25 non 32,98 29,30 <14,0 /
26 oui 25,16 18,95 <5,2 <2,8
27 oui 25,21 18,59 <5,6 /
28 oui 29,97 21,27 7,0±2,7 5,3±2,5
29 non 35,63 33,19 <3,2 6,5±3,0
30 non 12,89 10,22 <4,8 /
31 non 12,48 10,88 6,2±2,2 <5,2
32 non 27,69 26,42 18,6±4,7 <3,2
33 non 21,04 17,81 <3,2 /
34 oui 65,56 51,52 37,6±6,4 31,4±5,5
35 non 29,54 28,15 <5,2 /
36 non 30,91 26,21 6,6±2,1 8,3±2,7
37 oui 87,81 56,73 61,9±7,3 23,2±4,1
38 non 10,45 10,36 <5,2 /
39 oui 0,00 0,00 <5,2 /
40 non 37,83 37,57 8,0±2,2 4,7±2,1
41 non 46,84 29,40 7,9±3,2 12,2±3,0
42 oui 44,08 35,15 33,4±6,2 17,3±3,8
43 non 37,90 35,40 12,3±3,4 <2,0
44 non 29,25 25,20 6,4±3,0 /
45 non 18,80 15,50 8,5±2,6 /
46 non 49,51 37,22 13,5±4,5 8,7±2,6
47 non 39,03 35,49 19,6±4,2 15,1±3,4

Ancien lien