The OSPAR Convention for the Protection of the North-East Atlantic discreetly postpones its commitment to reduce radioactive discharges at sea from 2020 to 2050

Following the Cascais meeting of the OSPAR Convention for the Protection of the North-East Atlantic, which took place on October 1, the participating ministers discreetly postponed until 2050 the commitment made in 1998 in Sintra to reduce radioactive discharges into the sea to levels close to zero by 2020. Once again, international commitments to the environment are being disregarded. This does not bode well for the upcoming COP26 in Glasgow.

France is the first beneficiary of this 30-year postponement because, with its reprocessing plant at La Hague, it has the highest radioactive discharges to the sea in Europe. And these discharges are not decreasing, as shown by the results of the citizen monitoring of radioactivity in the environment carried out by ACRO for over 25 years.

The commitments made in 1998 in Sintra, Portugal, by the member states of the OSPAR Convention were confirmed at the following meetings in 2003 in Bremen and 2010 in Bergen: to reduce the levels of radioactive substances in the environment to levels close to background noise for natural substances and close to zero for those of human origin.

The results of the citizen monitoring of radioactivity in the environment carried out by ACRO for more than 25 years show that the situation is not satisfactory: discharges from the Orano reprocessing plant at La Hague are visible all along the Channel coastline and, in the summer of 2021, could still be detected as far as the Danish border. The association condemns this 30-year extension of the pollution permits and urges France to significantly reduce its radioactive discharges at sea by implementing available technologies. It will, for its part, maintain its vigilance.

Major radioelements

The OSPAR Convention’s 2010 “Quality Status” states that fuel fabrication and reprocessing plants are responsible for 98% of radioelement discharges from the nuclear sector. With the UK’s Sellafield reprocessing plant closing in 2020, French discharges are now ultra-dominant.

In its latest contribution to the OSPAR Convention, dated 2019, France acknowledges that the radioelements with the greatest impact are iodine-129 and carbon-14: the dose to the reference group, i.e. local fishermen, would be reduced by 30% if these two radioelements were filtered. The reduction of cobalt-60 discharges would lead to a 4% reduction in the dose of the same reference group. Unfortunately, Orano has not implemented the technologies available in other countries to reduce discharges of these three elements. Iodine and cobalt are among the 62 radioelements filtered by the ALPS station at Fukushima.

As part of its Citizen’s Observatory of Radioactivity in the Environment, ACRO systematically detects iodine-129 in algae all along the Channel coastline at levels that do not decrease with time. It has detected it as far as the Danish border.

Cobalt-60 is regularly detected in algae collected in the Nord-Cotentin region and more episodically in St-Valéry-en-Caux, near the Penly and Paluel nuclear power plants in the Seine Maritime.

ACRO does not have the technical capacity to measure carbon-14, which is also naturally present in the environment, but the radiological report published by IRSN shows that there is a systematic contribution from discharges from nuclear facilities and that levels significantly exceed natural levels in the Channel and the North Sea, as far as the Netherlands. The highest levels are more than twice as high as natural levels.

It is important to note that tritium (radioactive hydrogen) discharges have risen sharply since the Sintra declaration. Orano’s La Hague plant has the highest discharges in the world, according to the Japanese government’s assessment: the plant discharges every 30 days what Japan is about to discharge in 30 years in Fukushima!

ACRO also monitors tritium in seawater. In the Nord-Cotentin region, the levels are more than 100 times higher than the natural background.

All results are detailed in the appendice to the OSPAR Press Release

Ambient levels in the marine environment are not close to zero for artificial radioactive substances (iodine-129 and cobalt-60), nor close to background levels for tritium and carbon-14. The excuse of the need for more research and development to reduce radioactive discharges at sea, put forward in the French contribution to OSPAR, cannot be accepted. With the exception of tritium, technologies are available and used in other countries. They must be used in France.