Précisions techniques sur les modèles d’impact

Fiche technique de l’ACROnique n°47, décembre 1999


Ce texte a été rédigé par l’ACRO afin d’aider à la compréhension du dossier sur les résultats des travaux du Comité Nord Cotentin.


Un individu vivant à proximité d’une installation nucléaire rejetant dans l’environnement des radioéléments subit des rayonnements ionisants qui auront un impact sur sa santé. Les voies d’atteintes sont multiples et la dose reçue par cet individu ne peut pas être mesurée directement et doit donc être reconstituée à partir de modèles mathématiques.

En fonctionnement normal, les doses reçues par la population doivent être inférieures à des limites fixées par la réglementation. Les effets sur la santé sont alors aléatoires[ 1] c’est-à-dire qu’il est impossible de connaître les effets sur un individu, seules les probabilités sur un grand nombre d’individus peuvent être calculées. Cela oblige à n’étudier qu’un impact moyen subi par une « cohorte » d’individus (toute la population, ou seulement les jeunes de 0 à 24 ans, par exemple).

La première étape d’une étude d’impact consiste à « caractériser le terme source », à savoir connaître le plus précisément possible la nature et la quantité de radioéléments rejetés dans lâenvironnement. Puis, en fonction des quantités rejetées annuellement, il faut étudier la dispersion de ces éléments afin dâobtenir une contamination moyenne annuelle de l’environnement.

En mer et en rivière, les effluents seront dilués dans l’eau puis reconcentrés dans les sédiments et les organismes vivants. La modélisation mathématique utilisée est alors très simple (la quantité rejetée x coefficient de dilution x coefficient de concentration) et peut parfois être consolidée par des résultats de mesures dans l’environnement. Le destin des rejets aériens est plus complexe à étudier : après une dilution dans l’air qui dépend de la météo, une partie des radioéléments va retomber sur le sol où il y a accumulation. Les végétaux seront contaminés via les feuilles et les racines et les animaux via leurs aliments. Tous ces transferts sont très mal connus et leur modélisation ne peut pas être validée par des mesures dans l’environnement [ 2]. Aux rejets aériens il faut encore ajouter l’apport de radioéléments du milieu marin via les embruns et l’épandage d’algues.

La population locale est irradiée par le rayonnement ambiant et contaminée par son alimentation, mais aussi en respirant et en se baignant. Il faut additionner toutes ces contributions pour obtenir la dose moyenne reçue sur une année. Pour estimer le nombre de cas de leucémie attendus, il faut sommer toutes les doses reçues au cours de la vie des individus de la cohorte étudiée. Là encore, l’effet des radiations sur la santé est mal connu et est basé sur une extrapolation de ce qui a été observé chez les survivants de Hiroshima et Nagasaki qui ont subi une irradiation forte et soudaine, et non une contamination continue.

On voit donc que la dose reçue dépend de nombreux paramètres parfois mal connus. Jusqu’à présent, les études d’impact des exploitants et des autorités de contrôle étaient basées sur un jeu de paramètres issus de la littérature scientifique internationale et sur des modes de vie moyens nationaux. Un des efforts du Comité a été de tenir compte des spécificités locales. Mais de nombreux paramètres n’ont pas pu être recalés sur des données locales et demeurent entachés d’une grande incertitude qui se reporte sur le calcul de dose final.

Pour étudier l’influence des modes de vie, des scénarii pénalisants ont été étudiés mais pour tous les autres paramètres leur incertitude n’a pas été prise en compte. L’ACRO est à l’origine de nombreux scénarii étudiés par le Groupe.

Les résultats obtenus ont été exprimés en terme de dose moyenne reçue par l’ensemble de la population à laquelle il faut ajouter des doses supplémentaires calculées dans le cadre des scénarii particuliers et d’accidents.

Les doses à la moelle osseuse dues aux rejets de routine et accidents (hors situations pénalisantes) ont été utilisées pour évaluer un nombre de cas de leucémies. Les résultats obtenus sâexpriment en terme de probabilité.

Ainsi, le nombre de cas attendus liés aux installations nucléaires calculé par le Groupe est de 0,0020 et la probabilité (ou le nombre de « chances ») d’avoir un cas est de 0,1 %. Mais en multipliant la dose obtenue par 35 (ce qui n’est pas aberrant compte-tenu des incertitudes), la probabilité d’observer un cas devient supérieure à 5 %, ce qui est généralement considéré comme significatif par les statisticiens.


[ 1] Voir Les rayonnements et la santé, ACROnique du nucléaire n°27, décembre 1994
[ 2] Quelques mesures de krypton 85 dans l’air ont permis de montrer que les modèles utilisés jusqu’alors par les exploitants et les autorités de sûreté n’étaient pas valables localement. Le modèle alternatif utilisé par le Groupe n’a pas pu être validé par des mesures.

Ancien lien